Entwicklung eines neuartigen Solvatationsmodells für das Kraftfeldprogramm MOMO

Zur Vorhersage der Konformationen organischer Moleküle in wässriger Lösung wurde ein explizites Solvatationsmodell (TPA3) für das Kraftfeldprogramm MOMO entwickelt, getestet und erfolgreich angewendet. Für jede zu optimi
Zur Vorhersage der Konformationen organischer Moleküle in wässriger Lösung wurde ein explizites Solvatationsmodell (TPA3) für das Kraftfeldprogramm MOMO entwickelt, getestet und erfolgreich angewendet. Für jede zu optimierende Konformation wird eine der räumlichen Ausdehnung entsprechende Solvathülle generiert. Dadurch werden zu große Solvathüllen mit vielen Wassermolekülen vermieden. Diesem ersten Schritt liegt das Aneinanderreihen von Eiselementarzellen und ungeordneten Wasserzellen zugrunde. Überschneidungen oder unrealistisch nahe Orientierungen von Wassermolekülen zu dem solvatisierten Molekül werden ausgeschlossen. Gleichzeitig wird sichergestellt, dass in der Umgebung von Wasserstoffbrücken-Donoren und -Akzeptoren im solvatisierten Molekül Wassermoleküle zu finden sind.
Die Optimierung vereinfachter Wassermoleküle ohne molekularen Zusammenhalt basiert auf vektoriellen Ausgleichsbewegungen, in die die Bewegungsvektoren der minimierten Wassermolekül-Atome eingehen. Dadurch ist es möglich, ein einziges Potential für Coulomb- und vdw-Wechselwirkungen ohne Vernachlässigung der Rotation zu nutzen, was eine deutliche Rechenzeitoptimierung bedeutet. Die besondere Beachtung der Programmstruktur von MOMO und die sich daraus ergebende Interaktion des Solvatationsmodells mit nahezu allen relevanten Programmteilen des Kraftfeldprogramms ermöglicht trotz ihres kontinuierlichen Austauschs eine Unterscheidung von präzise behandelten nahen und vereinfachten fernen Wassermolekülen während der gesamten Minimierung. Gleichzeitig werden von jedem nahen Wassermolekül die Einzelenergiebeiträge der Wechselwirkungen mit dem solvatisierten Molekül direkt in den Potentialen gesammelt und durch Summation die Stabilisierungsenergie Estab bestimmt.
Somit wird ein Nahbereich mit ungeordneten Wassermolekülen um ein solvatisiertes Molekül herum mit der gesamten in MOMO möglichen Präzision behandelt. Hierbei ist die Berechnung von Wasserstoffbrücken zwischen dem solvatisierten Molekül und umgebenden Wassermolekülen für Estab von entscheidender Bedeutung. Hingegen wird der Fernbereich ausgehend und basierend auf der Eisstruktur rechenzeitoptimiert behandelt. Dynamik und Durchmischung mit dem Nahbereich werden durch den auf der Minimierung der isolierten Atome basierenden TPA3-Algorithmus erreicht.
Mit den erreichten Rechenzeitoptimierungen können systematische Konformationsanalysen an Di- und Tripeptiden in Wasser mit bis zu 2500 Konformationen problemlos durchgeführt werden. Mit den statistischen Auswertungsmethoden des Clusterings, der Medianbildung und der Datenrasterung ergaben sich aussagekräftige Energieflächen über Ramachandran-Diagrammen der berechneten Peptide. Die Visualisierung der Trajektorien und der Minimum-Konformationen der Peptide mit deren Wasserstoffbrücken und der daran beteiligten Wassermoleküle sowie die detaillierte Analyse der Energiebeiträge lieferten eine solide Interpretationsbasis der vorhergesagten Strukturen.
Insgesamt wurden Konformationsanalysen im Vakuum und mit dem neu entwickelten TPA3-Solvatationsmodell an zehn Peptiden durchgeführt. Ungeschützte Peptide wurden in unterschiedlich protonierten Formen berechnet. Vergleichende Konformationsanalysen mit AMBER11 und TIP3P-Solvatationsmodell waren nur für die zwitterionische Form möglich.
Bei dem geschützten Alaninpeptid N-Acetyl-L-L-dialanin-N-methylamid zeigte sich eine Begünstigung der PPII-Struktur. Daneben trat ein Minimum im β-Faltblattbereich auf; eine Stabilisierung des αR-helikalen Bereichs wurde ebenfalls beobachtet. Dies entspricht den in der aktuellen Literatur zu findenden spektroskopisch erhaltenen Ergebnissen.
Aufgrund nicht vorhandener Informationen bezüglich der Energiebeiträge durch das explizite TIP3P-Solvatationsmodell war die Auswertung der AMBER11-Konformationsanalysen auf die Verteilung der Konformationen im Ramachandran-Diagramm begrenzt und somit stark eingeschränkt. Bezüglich N-Acetyl-L-L-dialanin-Nmethylamid ergaben sich auch mit AMBER11 Häufungen im PPII- und β-Faltblatt-Bereich und darüber hinaus im αD-helikalen Bereich.
Für Peptide mit negativ geladenen Seitenketten in der zentralen Position wurden Konformationen, die in Turns zu finden sind, als begünstigt berechnet. Bei Tripeptiden mit Aminosäuren, die Donoren D bzw. Akzeptoren A zur Wasserstoffbrückenbildung in ihren Seitenketten besitzen (Ala−Lys−Ala, Ala−Asp−Ala, Cys−Asn−Ser), wurden in allen Fällen zweifache Wasserstoffbrücken über verbrückende Wassermoleküle hinweg (D/A···H2O···D/A) beobachtet. Diese scheinen insbesondere bei Ala−Asp−Ala durch Beteiligung des Aspartatrestes und einem zweimalig negativen Energiebetrag von mehr als 10 kJ/mol Einfluss auf die Konformation zu nehmen und δ-Turn-Konformationen zu stabilisieren. Die AMBER11-Konformationsanalyse mit TIP3P-Modell ergab hingegen eine deutliche Häufung minimierter Konformationen für φ < 120°. Diese Häufung zeigt sich als deutlicher Streifen im Ramachandran-Diagramm bei φ ≈ 60°. Die α-helikalen Konformationen αD und αL sowie die C7 ax-Struktur sind von AMBER11 hier stark begünstigt. Die Konformationsanalyse mit TPA3-Solvatationsmodell an Ala−Lys−Ala zeigte mehrere Minima; die Konformationen im Bereich δR / PPII / C7 eq werden jedoch besonders stabilisiert. Ein verbrückendes Wassermolekül ist auch hier beteiligt.
Bei den Tripeptiden mit sperrigen Seitenketten, wie Ala−Phe−Ala und Gly−Phe−Gly, wird eine sterische Abschirmung durch den Phenylrest deutlich, die zu einer Abschwächung der Begünstigung von PPII-Konformationen führt. Stattdessen sind α-helikale Konformationen favorisiert. Bei Gly−Phe−Gly scheint diese Abschirmung einen weniger starken Einfluss zu haben: im PPII- und β-Faltblattbereich sind wieder Minima vorhanden. Generell sind die Ergebnisse der MOMO/TPA3-Konformationsanalysen im Einklang mit der aktuellen Literatur und sehr plausibel für Peptide, bei denen (noch) keine eindeutigen Literaturergebnisse vorliegen. Die aktuelle Annahme, dass intramolekulare Wasserstoffbrücken in Peptiden Turn-Konformationen in Wasser stabilisieren könnten, wird mit den in dieser Arbeit mehrfach aufgetretenen zweifachen Wasserstoffbrücken über verbrückende Wassermoleküle erweitert.
Mit AMBER11 konnte dagegen kaum Bezug zu experimentellen Literaturergebnissen hergestellt werden. Dies liegt vor allem daran, dass die für eine aussagekräftige Auswertung unverzichtbaren Energiebeiträge der Peptid-Wechselwirkungen mit einzelnen Wassermolekülen mit AMBER11 nicht zur Verfügung standen. AMBER11 eignet sich daher kaum als Referenz für die mit MOMO und dem neu entwickelten TPA3-Solvatationsmodell erhaltenen Ergebnisse.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Thorsten Pisternick
URN:urn:nbn:de:hebis:30:3-10903
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Ernst Egert, Josef Wachtveitl
Advisor:Ernst Egert
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2014/02/11
Year of first Publication:2014
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Date of final exam:2014/01/29
Release Date:2007/05/03
Pagenumber:190, X
HeBIS PPN:336308833
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $