Aufbau eines Experimentes zur Untersuchung der Ionenstrahlkühlung mit Hilfe eines HF-Quadrupols

Die Arbeit beschreibt ein Experiment zur Kühlung eines 40Ar-Ionenstrahls mittels eines 4He-Hintergrundgases innerhalb eines unmodulierten RF-Quadrupols von 500 mm Länge. Ziel des Experimentes war es, den Einfluss der Gas
Die Arbeit beschreibt ein Experiment zur Kühlung eines 40Ar-Ionenstrahls mittels eines 4He-Hintergrundgases innerhalb eines unmodulierten RF-Quadrupols von 500 mm Länge. Ziel des Experimentes war es, den Einfluss der Gaskühlung auf die Qualität von Ionenstrahlen geringer Energie und Intensität zu untersuchen. Die Ionen wurden bei unterschiedlichen Spannungen aus einem Duoplasmatron extrahiert und vor der Injektion in den Quadrupol durch ein elektrostatisches Linsensystem formiert. Die Stromstärke der Strahles wurde mittels einer Faradaytasse gemessen, die mit einer Sekundärelektronen unterdrückenden Repellerblende ausgestattet ist. Der Einfluß der variierten Parameter Hintergrundgasdruck, Quadrupolfrequenz und Strahlenergie auf die Qualität des Strahls wurde dabei nicht direkt über dessen, die Phasenraumverteilung beschreibende, Emittanz gemessen, sondern über die Veränderung der registrierten Strahlstromstärken an einer Blende konstanter Apertur, also der Brillanz abgeleitet. Vorbereitend wurden zunächst Duoplasmatron und Injektionssystem überholt, aufgebaut und mit der nötigen Energie- und Kühlversorgung ausgerüstet. Im anschließenden Testlauf mit ungekühlten Heliumionen wurden die einzustellenden Werte der Betriebsparameter Quellendruck und diverse Blendenspannungen ermittelt und das System auf seine der Reproduktion dienenden Stabilität geprüft. Dabei wurden im Dauerbetrieb Strahlstromstärken von 0,29 mA bei 1 keV/u und 0,02 mA bei 0,15 keV/u Strahlenergie erzielt. Mittels der bekannten Emittanz des Helium-Strahls bei 1 keV/u Energie und 0,25 mA Strahlstromstärke wurde die jeweilige normierte Emittanz der noch ungekühlten Strahlen auf 2,18*10-2 im ersten und 1,61*10-2 im zweiten Fall abgeschätzt. Zur Gaskühlung wurde ein Quadrupol mit 10 mm Apertur- und 7,5 mm Elektrodenradius gefertigt und mit einem Phasentrenner gekoppelt. Ein Breitbandgenerator und -Verstärker dienten der frequenz- und spannungsvariablen Elektrodenbelegung. Der Hintergrundgasdruck wurde mittels einem handelsüblichen Regelventil variiert. Um der ein großes Masseverhältnis von Strahlionen zu Hintergrundgas fordernden Theorie Rechnung zu tragen, wurden Argon als Ionen und Helium als Buffergas gewählt. Einer eingehenden Untersuchung der Auswirkung der einzelnen Komponenten und ihrer Kombination auf die Eigenschaften des Ionenstrahls folgte eine schrittweise Variation von Quadrupolfrequenz und Hintergrundgasdruck im Bereich 1-5 MHz und 9*10-6 - 4*10-3 mbar bei den Strahlenergien 15, 25 und 80 eV/u. Die hierbei gemessenen Strahlstromstärken wurden über die frequenzabhängige Elektrodenspannung normiert und mit der Stärke der ungekühlten Strahlen verglichen. Bei 15 eV/u Strahlenergie konnte die gemessene Maximalstromstärke um 43 % von 0,014 µA/V ungekühlt auf 0,02 µA/V bei 1*10-4 mbar Hintergrundgasdruck gesteigert werden. Die Strahlstromstärke des Strahles mit 25 eV/u Energie wurde von 0,045µA/V des ungekühlten auf 0,1 µA/V bei ca. 6*10-5 mbar verdoppelt. Bei 80 eV/u Energie blieb die Strahlstromstärke mit 0,35 µA/V unverändert, jedoch wurde im gesamten Bereich zwischen 2*10-5 und 3*10-5 mbar und 3,4 - 4,6 MHz mit annähernd konstanten 0,28 µA/V ein Plateau hoher Strahlstromstärke registriert, dem etwa 0,06 µA/V im ungekühlten Strahl entgegenstehen. Ein weniger stark ausgeprägtes Analogon wurde bei 15 eV/u im Frequenzbereich um 3,5 MHz beobachtet. In zwei von drei Fällen konnte im Experiment die Strahlstromstärke durch die Gaskühlung deutlich gesteigert werden, im dritten Fall wurde die Zahl der transportierten Ionen in einem zuvor ungeeigneten Frequenzbereich um den Faktor 4,5 gesteigert. Durch die Beziehung zwischen Strahlstromstärke I, Strahlbrillanz B und Strahlemittanz ε mit I~B~1/ε2 kann abschließend eine Verminderung der Strahlemittanz durch die Gaskühlung festgestellt werden. Die durchgeführten Experimente haben gezeigt, daß man bei niedrigen Strahlenergien einfach geladene Ionen bei relativ hohem Gasdruck und geeigneten Parametern des Quadrupols transportieren und die Emittanz des Strahls verbessern kann. Die Kombination von Quadrupol und Buffergas stellt also ein System dar, das als Gaskühler bei kleinen Strömen von Niedrigenergiestrahlen eingesetzt werden kann. Als nächstes würde zur weitergehenden, jedoch den Rahmen dieser Arbeit übersteigenden Untersuchung ein technisch und finanziell aufwändigerer Aufbau benötigt. Das benutzte Linsensystem würde durch ein auf die Ionensorte speziell abgestimmtes Injektionssystem und die Faradaytasse durch eine rechnergesteuerte, orts- und winkelauflösende Emittanzmessanlage ersetzt. Die somit erhaltene höhere Auflösung des Strahles würde den Übergang von der vorliegenden qualitativen Beschreibung der Gaskühlung zu einer quantitativen ermöglichen.
show moreshow less

Download full text files

  • application/pdf original_diplom_vassilakis.pdf (4041 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Evangelos Vassilakis
URN:urn:nbn:de:hebis:30-43448
URL:http://iaprfq.physik.uni-frankfurt.de/public/diplom/diplom_vassilakis.pdf
Document Type:Diplom Thesis
Language:German
Year of Completion:2003
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Release Date:2007/04/12
Last Page:92
Note:
Diese Arbeit steht leider (aus urheberrechtlichen Gründen) noch nicht im Volltext im WWW, benutzen Sie vorerst zum Volltext die URL http://iaprfq.physik.uni-frankfurt.de/public/diplom/diplom_vassilakis.pdf .
HeBIS PPN:186041772
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $