Neisseria meningitidis differentially controls host cell motility through PilC1 and PilC2 components of type IV pili

Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacter
Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and human host cells.
…show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Philippe C. Morand, Marek Drab, Krishnaraj Rajalingam, Xavier Nassif, Thomas F. Meyer
URN:urn:nbn:de:hebis:30-115059
DOI:http://dx.doi.org/10.1371/journal.pone.0006834
ISSN:1932-6203
Parent Title (English):PLoS one
Document Type:Article
Language:English
Date of Publication (online):2011/09/08
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2011/09/08
Note:
Copyright: © 2009 Morand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Source:PLoS ONE 4(8): e6834. doi: 10.1371/journal.pone.0006834
HeBIS PPN:276338766
Institutes:Medizin
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 3.0

$Rev: 11761 $