The O(N=2) model in polar coordinates at nonzero temperature

Chapter 1 contains the general background of our work. We briefly discuss important aspects of quantum chromodynamics (QCD) and introduce the concept of the chiral condensate as an order parameter for the chiral phase tr
Chapter 1 contains the general background of our work. We briefly discuss important aspects of quantum chromodynamics (QCD) and introduce the concept of the chiral condensate as an order parameter for the chiral phase transition. Our focus is on the concept of universality and the arguments why the O(4) model should fall into the same universality class as the effective Lagrangian for the order parameter of (massless) two-flavor QCD. Chapter 2 pedagogically explains the CJT formalism and is concerned with the WKB method. In chapter 3 the CJT formalism is then applied to a simple Z(2) symmetric toy model featuring a one-minimum classical potential. As for all other models we are concerned with in this thesis, we study the behavior at nonzero temperature. This is done in 1+3 dimensions as well as in 1+0 dimensions. In the latter case we are able to compare the effective potential at its global minimum (which is minus the pressure) with our result from the WKB approximation. In chapter 4 this program is also carried out for the toy model with a double-well classical potent