Stable TeV - black hole remnants at the LHC : discovery through di-jet suppression, mono-jet emission and a supersonic boom in the quark-gluon plasma

The production of Large Extra Dimension (LXD) Black Holes (BHs), with a new, fundamental mass scale of M_f = 1 TeV, has been predicted to occur at the Large Hadron Collider, LHC, with the formidable rate of 10^8 per year
The production of Large Extra Dimension (LXD) Black Holes (BHs), with a new, fundamental mass scale of M_f = 1 TeV, has been predicted to occur at the Large Hadron Collider, LHC, with the formidable rate of 10^8 per year in p-p collisions at full energy, 14 TeV, and at full luminosity. We show that such LXD-BH formation will be experimentally observable at the LHC by the complete disappearance of all very high p_t (> 500 GeV) back-to-back correlated Di-Jets of total mass M > M_f = 1 TeV. We suggest to complement this clear cut-off signal at M > 2*500 GeV in the di-jet-correlation function by detecting the subsequent, Hawking-decay products of the LXD-BHs, namely either multiple high energy (> 100 GeV) SM Mono-Jets (i.e. away-side jet missing), sprayed off the evaporating BHs isentropically into all directions or the thermalization of the multiple overlapping Hawking-radiation in a eckler-Kapusta-Plasma. Microcanonical quantum statistical calculations of the Hawking evaporation process for these LXD-BHs show that cold black hole remnants (BHRs) of Mass sim M_f remain leftover as the ashes of these spectacular Di-Jet-suppressed events. Strong Di-Jet suppression is also expected with Heavy Ion beams at the LHC, due to Quark-Gluon-Plasma induced jet attenuation at medium to low jet energies, p_t < 200 GeV. The (Mono-)Jets in these events can be used to trigger for Tsunami-emission of secondary compressed QCD-matter at well defined Mach-angles, both at the trigger side and at the awayside (missing) jet. The Machshock-angles allow for a direct measurement of both the equation of state EoS and the speed of sound c_s via supersonic bang in the "big bang" matter. We discuss the importance of the underlying strong collective flow - the gluon storm - of the QCD- matter for the formation and evolution of these Machshock cones. We predict a significant deformation of Mach shocks from the gluon storm in central Au+Au collisions at RHIC and LHC energies, as compared to the case of weakly coupled jets propagating through a static medium. A possible complete stopping of pt > 50 GeV jets at the LHC in 2-3 fm yields nonlinear high density Mach shocks in he quark gluon plasma, which can be studied in the complex emission and disintegration pattern of the possibly supercooled matter. We report on first full 3-dimensional fluid dynamical studies of the strong effects of a first order phase transition on the evolution and the Tsunami-like Mach shock emission of the QCD matter.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Horst Stöcker
URN:urn:nbn:de:hebis:30-27383
Document Type:Preprint
Language:English
Date of Publication (online):2006/06/06
Year of first Publication:2006
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2006/06/06
Tag:LHC ; Mach Shocks; black holes
HeBIS PPN:190697482
Institutes:Physik
Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $