Kinetic characterization of selective peroxisome-proliferator-activated receptor gamma modulators in vitro

Background: The ligand-activated transcription factor, peroxisome-proliferator-activated receptor gamma (PPARγ), has been shown to play an essential role in immunosuppression during sepsis. PPARγ is upregulated in T cell
Background: The ligand-activated transcription factor, peroxisome-proliferator-activated receptor gamma (PPARγ), has been shown to play an essential role in immunosuppression during sepsis. PPARγ is upregulated in T cells of septic patients, sensitizing these cells to PPARγ-dependent apoptosis and thus contributing to T-cell depletion [1,2]. In the polymicrobial cecum ligation and puncture (CLP) sepsis model in mice, both T-cell-specific gene knockout (Lck-Cre PPARγfl/fl) and systemic pharmacological PPARγ antagonism by GW9662 improved survival [3]. Because GW9662 was only effective when applied 3 hours after CLP, we were interested to extend this time frame. For this reason we characterized the kinetics of SPPARγMs when administered before or in combination with the agonist thiazolidinedione, rosiglitazone.

Methods: A PPARγ-dependent transactivation assay was used in HEK293T cells. It is based on the vector pFA-PPARγ-LBD-GAL4-DBD encoding the hybrid protein PPARγ-LBD-GAL4-DBD and the reporter vector pFR-Luc, carrying a GAL4-responsive element in front of the Firefly luciferase gene. These two vectors were co-transfected, in combination with a control vector encoding Renilla luciferase (pRL-CMV) to normalize Firefly luciferase activity for transfection efficiency. Following transfection, cells were incubated with the SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 for different times (2 to 48 hours) and at increasing doses (0.01 to 10 μM), with or without rosiglitazone (0.01 to 10 μM). Transactivation was analyzed using a 96-well plate format.

Results: Rosiglitazone transactivated PPARγ in a time-dependent and dose-dependent manner, the response gradually increasing to a maximum at 48 hours with 10 μM. Low concentrations (0.01 to 0.1 μM) of SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 all exerted dose-independent antagonistic effects at an early incubation time point (2 hours). From 10 hours onwards, MCC-555 and GW9662, given alone, both exerted PPARγ agonistic effects, MCC-555 in parallel to responses to rosiglitazone, but GW9662 with characteristics of partial antagonism. F-MOC showed no dose-dependent effect at any concentration at later time points. Only GW9662 (1 to 10 μM) was able to inhibit rosiglitazone (0.1 to 1 μM)-induced PPARγ transactivation after 10 hours.

Conclusion: Our kinetic analysis reveals clear differences in the modulatory characteristics of PPARγ inhibitors, with previously unreported early inhibitory effects and late agonistic or partial agonistic activity. New SPPARγMs with extended inhibitory activity may prove useful in the therapy of sepsis.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Tilo Knape, Lisa Eifler, Annika Heeg, Laura Kuchler, Bernhard Brüne, Michael J. Parnham, Andreas von Knethen
URN:urn:nbn:de:hebis:30:3-268870
URL:http://ccforum.com/content/16/S3/P52
DOI:http://dx.doi.org/10.1186/cc11739
Parent Title (English):Critical care : the leading online forum for critical care, intensive care and emergency medicine
Publisher:BioMed Central
Place of publication:London
Document Type:Conference Proceeding
Language:English
Date of Publication (online):2012/11/20
Date of first Publication:2012/11/14
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2012/11/20
Volume:16
Issue:Suppl. 3
Pagenumber:2
First Page:27
Last Page:28
Note:
© 2012 various authors, licensee BioMed Central Ltd. All articles published in this supplement are distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
HeBIS PPN:313422133
Institutes:Biochemie und Chemie
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 2.0

$Rev: 11761 $