Ninjurin 1 contributes to TLR-induced inflammation in endothelial cells

Background: Nerve injury induced protein 1 (Ninjurin 1 (Ninj1)) was first identified in Schwann cells and neurons contributing to cell adhesion and nerve regeneration. Recently, the role of Ninj1 has been linked to infla
Background: Nerve injury induced protein 1 (Ninjurin 1 (Ninj1)) was first identified in Schwann cells and neurons contributing to cell adhesion and nerve regeneration. Recently, the role of Ninj1 has been linked to inflammatory processes in the central nervous system where functional repression reduced leukocyte infiltration and clinical disease activity during experimental autoimmune encephalomyelitis in mice [1]. But Ninj1 is also expressed outside the nervous system in various organs such as the liver and kidney as well as on leukocytes [2,3]. Therefore, we hypothesized that Ninj1 contributes to inflammation in general; that is, also outside the nervous system, with special interest in the pathogenesis of sepsis.

Methods: Ninj1 was repressed by transfecting HMEC-1 cells, a human dermal microvascular endothelial cell line with siRNA targeting Ninj1 (siNinj1) or a negative control (siC). Subsequently, cells were stimulated with 100 ng/ml LPS (TLR4 agonist), 3 μg/ml LTA (TLR2 agonist) or 100 n/ml poly(I:C) (TLR3 agonist) for 3 hours. The inflammatory response was analyzed by real-time PCR. In addition, transmigration of neutrophils across a HMEC-1 monolayer was measured using transwell plates (pore size 3 μm).

Results: Repression of Ninj1 by siRNA reduced Ninj1 mRNA expression in HMEC about 90% (Figure 1A). Reduced Ninj1 expression decreased neutrophil migration to 62.5% (Figure 1B) and TLR signaling. In detail, knockdown of Ninj1 significantly reduced TLR-2 and TLR-4 triggered expression of ICAM-1 and IL-6 (Figure 1C,D) while poly(I:C)-induced expression was only slightly reduced. To analyze a more specific TLR-3 target, we measured IP-10 mRNA expression, which was also significantly reduced in siNinj1-transfected cells (Figure 1E).

Conclusion: Our in vitro data strongly indicated that Ninj1 is involved in regulation of TLR signaling and therewith contributes to inflammation. In vivo experiments will clarify its impact on systemic inflammation.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Carla Jennewein, Kai Zacharowski
URN:urn:nbn:de:hebis:30:3-268882
URL:http://ccforum.com/content/16/S3/P44
DOI:http://dx.doi.org/10.1186/cc11731
Parent Title (English):Critical care : the leading online forum for critical care, intensive care and emergency medicine
Publisher:BioMed Central
Place of publication:London
Document Type:Conference Proceeding
Language:English
Date of Publication (online):2012/11/20
Date of first Publication:2012/11/14
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2012/11/20
Volume:16
Issue:Suppl. 3
Pagenumber:2
First Page:22
Last Page:23
Note:
© 2012 various authors, licensee BioMed Central Ltd. All articles published in this supplement are distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
HeBIS PPN:313423784
Institutes:Medizin
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 2.0

$Rev: 11761 $