An algorithm for distributive unification

We consider unification of terms under the equational theory of two-sided distributivity D with the axioms x*(y+z) = x*y + x*z and (x+y)*z = x*z + y*z. The main result of this paper is that Dunification is decidable by g
We consider unification of terms under the equational theory of two-sided distributivity D with the axioms x*(y+z) = x*y + x*z and (x+y)*z = x*z + y*z. The main result of this paper is that Dunification is decidable by giving a non-deterministic transformation algorithm. The generated unification are: an AC1-problem with linear constant restrictions and a second-order unification problem that can be transformed into a word-unification problem that can be decided using Makanin's algorithm. This solves an open problem in the field of unification. Furthermore it is shown that the word-problem can be decided in polynomial time, hence D-matching is NP-complete.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Manfred Schmidt-Schauß
URN:urn:nbn:de:hebis:30-8891
URL:http://www.ki.informatik.uni-frankfurt.de/papers/schauss/DUNI.ps
Parent Title (German):Universität Frankfurt am Main. Fachbereich Informatik: Interner Bericht ; 94,13
Parent Title (English):Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik ; 2
Series (Serial Number):Interner Bericht / Fachbereich Informatik, Johann Wolfgang Goethe-Universität Frankfurt a.M. (94,13)
Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik (2)
Publisher:Johann Wolfgang Goethe-Univ., Fachbereich Informatik und Mathematik, Inst. für Informatik, Research group for Artificial Intelligence and Software Technology
Place of publication:Frankfurt [am Main]
Document Type:Working Paper
Language:English
Year of Completion:1994
Year of first Publication:1994
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2005/05/12
Source:Internal report 13/94
HeBIS PPN:190084987
Institutes:Informatik
Dewey Decimal Classification:004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $