On one-way cellular automata with a fixed number of cells

We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restrict
We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restricted model is reduced to the set of regular languages. A kC-OCA can be algorithmically converted to a deterministic finite automaton (DFA). The blow-up in the number of states is bounded by a polynomial of degree k. We can exhibit a family of unary languages which shows that this upper bound is tight in order of magnitude. We then study upper and lower bounds for the trade-off when converting DFAs to kC-OCAs. We show that there are regular languages where the use of kC-OCAs cannot reduce the number of states when compared to DFAs. We then investigate trade-offs between kC-OCAs with different numbers of cells and finally treat the problem of minimizing a given kC-OCA.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Andreas Malcher
URN:urn:nbn:de:hebis:30-71706
ISSN:1616-9107
Series (Serial Number):Frankfurter Informatik-Berichte (03, 1)
Publisher:Johann Wolfgang Goethe-Univ., Fachbereich Biologie und Informatik, Inst. für Informatik
Place of publication:Frankfurt am Main
Document Type:Working Paper
Language:English
Year of Completion:2003
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2009/10/16
SWD-Keyword:Zellularer Automat
Pagenumber:IV, 15 S.
HeBIS PPN:219731489
Institutes:Informatik
Dewey Decimal Classification:004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $