OPUS 4 Latest Documents RSS FeedLatest documents
http://publikationen.stub.uni-frankfurt.de/index/index/
Wed, 13 May 2015 14:30:08 +0200Wed, 13 May 2015 14:30:08 +0200From tomograms to molecular structure : image processing in cryo-electron tomography
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/37452
Cryo-electron tomography (CET) is a unique technique to visualize biological objects under near-to-native conditions at near-atomic resolution. CET provides three-dimensional (3D) snapshots of the cellular proteome, in which the spatial relations between macromolecular complexes in their near native cellular context can be explored. Due to the limitation of the electron dose applicable on biological samples, the achievable resolution of a tomogram is restricted to a few nanometers, higher resolution can be achieved by averaging of structures occurring in multiples. For this purpose, computational techniques such as template matching, sub-tomogram averaging and classification are essential for a meaningful processing of CET data.
This thesis introduces the techniques of template matching and sub-tomogram averaging and their applications on real biological data sets. Subsequently, the problem of reference bias, which restricts the applicability of those techniques, is addressed. Two methods that estimate the reference bias in Fourier and real space are demonstrated. The real space method, which we have named the “M-free” score, provides a reliable estimation of the reference bias, which gives access to the reliability of the template matching or sub-tomogram averaging process. Thus, the “M-free” score makes those approaches more applicable to structural biology. Furthermore, a classification algorithm based on Neural Networks (NN) called “KerDenSOM3D” is introduced, which is implemented in 3D and compensates for the missing-wedge. This approach helps extracting different structural states of macromolecular complexes or increasing the class purity of data sets by eliminating outliers. A comprehensive comparison with other classification methods shows superior performance of KerDenSOM3D. Zhou Yudoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/37452Wed, 13 May 2015 14:30:08 +0200Ab-initio simulations of pressure effects on structural and electronic properties of iron based superconductors
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/37013
The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe2As2 and CaFe2As2 under the application of external pressure. BaFe2As2 and CaFe2As2 belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe2As2 and CaFe2As2. In the case of BaFe2As2, an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the critical pressure of the phase transition by an order of magnitude, in agreement with the experimental findings. The in-plane pressure application did not result in transition to the non-magnetic tetragonal phase and instead, rotation of the magnetic order direction could be observed. This is discussed in the context of Ginzburg-Landau theory. We have also found that the magnetostructural phase transition is accompanied by a change in the Fermi surface topology, whereby the hole cylinders centered around the Gamma point disappear, restricting the possible Cooper pair scattering channels in the tetragonal phase. Our calculations also permit us to estimate the bulk moduli and the orthorhombic elastic constants of BaFe2As2 and CaFe2As2.
To study the electronic structure in systems with broken translational symmetry, such as doped iron based superconductors, it is necessary to develop a method to unfold the complicated bandstructures arising from the supercell calculations. In this thesis we present the unfolding method based on group theoretical techniques. We achieve the unfolding by employing induced irreducible representations of space groups. The unique feature of our method is that it treats the point group operations on an equal footing with the translations. This permits us to unfold the bandstructures beyond the limit of translation symmetry and also formulate the tight-binding models of reduced dimensionality if certain conditions are met. Inclusion of point group operations in the unfolding formalism allows us to reach important conclusions about the two versus one iron picture in iron based superconductors.
And finally, we present the results of ab-initio structure prediction in the cases of giant volume collapse in MnS2 and alkaline doped picene. In the case of MnS2, a previously unobserved high pressure arsenopyrite structure of MnS2 is predicted and stability regions for the two competing metastable phases under pressure are determined. In the case of alkaline doped picene, crystal structures with different levels of doping were predicted and used to study the role of electronic correlations.Milan Tomicdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/37013Thu, 26 Feb 2015 15:48:19 +0100Aspects of electron correlations in two-dimensional metals
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/37073
Landau's Fermi liquid theory has been the main tool for investigating interactions between fermions at low energies for more than 50 years. It has been successful in describing, amongst other things, the mass enhancement in ³He and the thermodynamics of a large class of metals. Whilst this in itself is remarkable given the phenomenological nature of the original theory, experiments have found several materials, such as some superconducting and heavy-fermion materials, which cannot be described within the Fermi liquid picture. Because of this, many attempts have been made to understand these ''non Fermi liquid'' phases from a theoretical perspective. This will be the broad topic of the first part of this thesis and will be investigated in Chapter 2, where we consider a two-dimensional system of electrons interacting close to a Fermi surface through a damped gapless bosonic field. Such systems are known to give rise to non Fermi liquid behaviour. In particular we will consider the Ising-nematic quantum critical point of a two-dimensional metal. At this quantum critical point the Fermi liquid theory breaks down and the fermionic self-energy acquires the non Fermi liquid like {omega}²/³ frequency dependence at lowest order and within the canonical Hertz-Millis approach to quantum criticality of interacting fermions. Previous studies have however shown that, due to the gapless nature of the electronic single-particle excitations, the exponent of 2/3 is modified by an anomalous dimension {eta_psi} which changes, not only the exponent of the frequency dependence, but also the exponent of the momentum dependence of the self-energy. These studies also show that the usual 1/N-expansion breaks down for this problem. We therefore develop an alternative approach to calculate the anomalous dimensions based on the functional renormalization group, which will be introduced in the introductory Chapter 1. Doing so we will be able to calculate both the anomalous dimension renormalizing the exponent of the frequency dependence and the exponent renormalizing the momentum dependence of the self-energy. Moreover we will see that an effective interaction between the bosonic fields, mediated by the fermions, is crucial in order to obtain these renormalizations.
In the second part of this thesis, presented in Chapter 3, we return to Fermi liquid theory itself. Indeed, despite its conceptual simplicity of expressing interacting electrons through long-lived quasi-particles which behave in a similar fashion as free particles, albeit with renormalized parameters, it remains an active area of research. In particular, in order to take into account the full effects of interactions between quasi-particles, it is crucial to consider specific microscopic models. One such effect, which is not captured by the phenomenological theory itself, is the appearance of non-analytic terms in the expansions of various thermodynamic quantities such as heat-capacity and susceptibility with respect to an external magnetic field, temperature, or momentum. Such non-analyticities may have a large impact on the phase diagram of, for example, itinerant electrons near a ferromagnetic quantum phase transition. Inspired by this we consider a system of interacting electrons in a weak external magnetic field within Fermi liquid theory. For this system we calculate various quasi-particle properties such as the quasi-particle residue, momentum-renormalization factor, and a renormalization factor which relates to the self-energy on the Fermi surface. From these renormalization factors we then extract physical quantities such as the renormalized mass and renormalized electron Lande g-factor. By calculating the renormalization factors within second order perturbation theory numerically and analytically, using a phase-space decomposition, we show that all renormalization factors acquire a non-analytic term proportional to the absolute value of the magnetic field. We moreover explicitly calculate the prefactors of these terms and find that they are all universal and determined by low-energy scattering processes which we classify. We also consider the non-analytic contributions to the same renormalization factors at finite temperatures and for finite external frequencies and discuss possible experimental ways of measuring the prefactors. Specifically we find that the tunnelling density of states and the conductivity acquire a non-analytic dependence on magnetic field (and temperature) coming from the momentum-renormalization factor. For the latter we discuss how this relates to previous works which show the existence of non-analyticities in the conductivity at first order in the interaction. Casper Drukierdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/37073Wed, 25 Feb 2015 15:40:25 +0100Transmission grid extensions in renewable electricity systems
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/36790
The present work deals with the integration of variable renewable energy sources, wind and solar energy into the European and US power grid. In contrast to other networks, such as the gas supply mains, the electricity network is practically not able to store energy. Generation and consumption therefore always have tobe balanced. Currently, the load curve is viewed as a rigid boundary condition, which must be followed by the generation system. The basic idea of the approach followed here is that weather-dependent generation causes a shift of focus of the electricity supply. At high shares of wind and solar generation, the role of the rigid boundary condition falls to the residual load, that is, the remaining load after subtraction of renewable generation. The goal is to include the weather dependence as well as the load curve in the design of the future electricity supply.
After a brief introduction, the present work first turns to the underlying weather-, generation and load data, which form the starting point of the analysis. In addition, some basic concepts of energy economics are discussed, which are needed in the following.
In the main part of the thesis, several algorithms are developed to determine the load flow in a network with a high share of wind and solar energy and to determine the backup supply needed at the same time. Minimization of the energy needed from controllable power plants, the capacity variable power plants, and the capacity of storing serve as guiding principles. In addition, the optimization problem of grid extensions is considered. It is shown that it can be formulated as a convex optimization problem. It turns out that with an optimized, international transmission network which is about four times the currently available transmission capacity, much of the potential savings in backup energy (about 40%) in Europe can be reached. In contrast, a twelvefold increase the transmission capacity would be necessary for a complete implementation of all possible savings in dispatchable power plants.
The reduction of the dispatchable generation capacity and storage capacity, however, presents a greater challenge. Due to correlations in the generation of time series of individual countries, it may be reduced only with difficulty, and by only about 30%.
In the following, the influence of the relative share of wind and solar energy is illuminated and examined the interplay with the line capacitance. A stronger transmission network tends to lead to a higher proportion of wind energy being better integrated. With increasing line capacity, the optimal mix in Europe therefore shifts from about 70% to 80% wind. Similar analyses are carried out for the US with comparable results.
In addition, the cost of the overall system can be reduced. It is interesting at this point that the advantages for the network integration may outweigh higher production costs of individual technologies, so that it is more favourable from the viewpoint of the entire system to use the more expensive technologies.
Finally, attention is given to the flexibility of the dispatchable power plants. Starting from a Fourier-like decomposition of the load curve as it was a few years ago, when hardly renewable generation capacity was present, capacities of different flexibility classes of dispatchable power plant are calculated. For this purpose, it is assumed that the power plant park is able to follow the load curve without significant surplusses or deficits. From this examination, it is derived what capacity must at least be available without having to resort to a detailed database of existing power plants.
Assuming a strong European cooperation, with a stronger international transmission network, the dispatchable power capacity can be significantly reduced while maintaining security of supply and generating relatively small surplusses in dispatchable power plants.Sarah Beckerdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/36790Wed, 04 Feb 2015 16:15:23 +0100Focus on quantum efficiency
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/36516
Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cuttingedge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.Andreas Buchleitner; Irene Burghardt; Yuan-Chung Cheng; Gregory D. Scholes; Ulrich T. Schwarz; Alexander Weber-Bargioni; Thomas Wellensarticlehttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/36516Wed, 21 Jan 2015 14:05:05 +0100Chopping and transport of high-intensity ion beams
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/36115
In this thesis, a novel 257 kHz chopper device was numerically developed, technically designed and experimentally commissioned; a 4-solenoid, low-energy ion beam transport line was numerically investigated, installed and experimentally commissioned; and a novel massless beam-separation system was numerically developed.
The chopper combines a pulsed electric field with a static magnetic field in an ExB or Wien-filter type field configuration. Chopped beam pulses with a 257 kHz repetition rate and rise times of 110 ns were experimentally achieved using a 14 keV helium beam.
Due to the achieved results, the complete LEBT line for the future Frankfurt Neutron Source FRANZ is ready to deliver a dc or a pulsed beam. At the same time, the LEBT section represents an attractive test stand for the study of low-energy ion beams. It combines magnetic lenses, which allow space-charge compensated beam transport, and a chopper system capable of producing short beam pulses in the hundred nanosecond range. Since these beam pulses are transported onwards, their longitudinal and transverse properties can be analyzed. The pulse duration and time of flight are well below the rise time for the space-charge compensation through residual gas ionization. This opens the possibility for dedicated investigations of the transport of short, low-energy beam pulses including longitudinal and transverse space-charge effects and of relevant issues like the dynamics of space-charge compensation and electron effects in short pulses.Christoph Wiesnerdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/36115Thu, 18 Dec 2014 13:21:35 +0100Design studies and prototype development of a 325 MHz 4-Rod RFQ
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35711
Benjamin Koubekdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35711Thu, 04 Dec 2014 13:34:43 +0100Development of specially shaped laser beams for the optimized acceleration of particles
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35508
The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 to 10^20 W/cm^2. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2)% when the targets have a thickness between 12 to 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.Christian Brabetzdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35508Thu, 20 Nov 2014 13:46:32 +0100Lattice QCD at finite temperature with Wilson fermions
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35074
The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang.
The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD).
These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today.
In the course of this thesis, the LQCD application cl2qcd has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. cl2qcd constitutes the first application for Wilson type fermions in OpenCL.
It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential.
Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite temperature transition in the Nf=2 chiral limit at zero chemical potential. It is not known if it is of first or second order. To this end, simulations utilising Twisted Mass Wilson fermions aiming at the chiral limit are presented in this thesis.
Another possibility is the investigation of QCD at purely imaginary chemical potential. In this region, QCD is known to posses a rich phase structure, which can be used to constrain the phase diagram of QCD at real chemical potential and to clarify the nature of the Nf=2 chiral limit. This phase structure is studied within this thesis, in particular the nature of the Roberge-Weiss endpoint is mapped out using Wilson fermions.Christopher Pinkedoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35074Wed, 17 Sep 2014 13:53:52 +0200Real time observables for the Quark-Gluon Plasma from the lattice
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35026
Christian Schäferdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/35026Thu, 11 Sep 2014 10:16:56 +0200Tuning and optimization of the field distribution for 4-rod radio frequency quadrupole linacs
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/34679
In this thesis, the tuning process of the 4-rod Radio Frequency Quadrupole has been analyzed and a theory for the prediction of the tuning plate's influence on the longitudinal voltage distribution was developed together with RF design options for the optimization of the fringe fields.
The basic principles of the RFQ's particle dynamics and resonant behavior are introduced in the theory part of this thesis. All studies that are presented are based on the work on four RFQs of recent linac projects. These RFQs are described in one chapter. Here, the projects are introduced together with details about the RFQ parameters and performance. In the meantime two of these RFQs are in full operation at NSCL at MSU and FNAL. One is operating in the test phase of the MedAustron Cancer Therapy Center and the fourth one for LANL is about to be built. The longitudinal voltage distribution has been studied in detail with a focus on the influence of the RF design with tuning elements and parameters like the electrodes overlap or the distance between stems. The theory for simulation methods for the field flatness that were developed as part of this thesis, as well as its simulation with CST MWS have been analyzed and compared to measurements. The lumped circuit model has proven to predict results with an accuracy that can be used in the tuning process of 4-rod RFQs. Together with results from the tuning studies, the studies on the fringe fields of the 4-rod structure lead to a proposal for a 4-rod RFQ model with an improved field distribution in the transverse and longitudinal electric field.
Janet Susan Schmidtdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/34679Thu, 24 Jul 2014 11:45:08 +0200Modelling radiation fields of ion beams in tissue-like materials
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/34612
Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers.
In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data.
In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows:
MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and lithium beams similar to the one for carbon beam. Well-adjusted biological dose distributions for H-1, He-4, C-12 and O-16 with a very flat spread-out Bragg peak (SOBP) plateau were calculated with MCHIT+MKM; MCHIT+MKM predicts less damage to healthy tissues in the entrance channel for SOBP He-4 and C-12 beams compared to H-1 and O-16 ones. No definitive advantages for oxygen ions with respect to carbon were found.Lucas Norberto Burigodoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/34612Wed, 23 Jul 2014 16:35:47 +0200Design of the micro vertex detector of the CBM experiment : development of a detector response model and feasibility studies of open charm measurement
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/34412
The PhD addresses the feasibility of reconstructing open charm mesons with the Compressed Baryonic Matter experiment, which will be installed at the FAIR accelerator complex at Darmstadt/Germany. The measurements will be carried out by means of a dedicated Micro Vertex Detector (MVD), which will be equipped with CMOS Monolithic Active Pixel Sensors (MAPS). The feasibility of reconstructing the particles with a proposed detector setup was studied.
To obtain conclusive results, the properties of a MAPS prototype were measured in a beam test at the CERN-SPS accelerator. Based on the results achieved, a dedicated simulation software for the sensors was developed and implemented into the software framework of CBM (CBMRoot). Simulations on the reconstruction of D0-mesons were carried out. It is concluded that the reconstruction of those particles is possible.
The PhD introduces the physics motivation of doing open charm measurements, represents the results of the measurements of MAPS and introduces the innovative simulation model for those sensors as much as the concept and results of simulations of the D0 reconstruction.
Christina Anna Deveauxdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/34412Wed, 02 Jul 2014 18:00:34 +0200Low-energy effective models for two-flavor quantum chromodynamics and the universality hypothesis
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33794
Mara Grahldoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33794Fri, 30 May 2014 15:19:56 +0200Measurement and interpretation of laser accelerated protons at GSI
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33770
This thesis is structured into 7 chapters:
• Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly.
• Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied.
• Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling.
• Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, wherethe evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is generated by the Matlab program, while the TraceWin code is employed to study the tracking through magnetic elements.
• Chapter 6 describes the PHELIX laser parameters at GSI with chirp pulse amplification technique (CPA), and Gafchromic Radiochromic film RCF) as a spatial energy resolver film detector. The results of experiments with laser proton acceleration, which were performed in two experimental areas at GSI (Z6 area and PHELIX Laser Hall (PLH)), are presented in section 6.3.
• Chapter 7 includes the main results of this work, conclusions and gives a perspective for future experimental activities.Husam Al-Omaridoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33770Wed, 07 May 2014 16:43:19 +0200Studies on the focusing performance of a Gabor lens depending on nonneutral plasma properties
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33431
The concept of the Gabor lens goes back to an idea by Dennis Gabor, who proposed a magnetron-type trap as an effective diverging lens for electron beams (collecting lens for positive ion beams).
Electrons confined inside the lens volume by orthogonal magnetic and electric fields, create an electric space charge field that causes a radial symmetric focusing force on an ion beam passing through the lens volume.
Since the beginning of the 1990s, a new design of this lens type as well as numerical models to describe the confined plasma cloud have been developed at the Institute for Applied Physics (IAP, Johann Wolfgang Goethe-University Frankfurt).
Thanks to an improved understanding of the plasma confinement as a function of the external fields, two lenses have successfully been tested for low beam currents and remain in operation.
In the scope of this work, the performance of a prototype Gabor lens for the transport of intense, i.e. space charge dominated ion beams, was investigated at the High Current Test Injector (HOSTI) of GSI Helmholtzzentrum für Schwerionenforschung GmbH for the first time.
To ensure an optimal focusing performance of the Gabor lens a homogeneous and stable electron confinement is required. Therefore, new non-interceptive diagnostic methods were developed to investigate the parameters and state of the confined nonneutral plasma column as a function of the external fields.
An essential part of the studies was the time-resolved diagnostic of an occurring plasma instability and the determination of the electron temperature via optical spectroscopy. The latter necessitated the detailed investigation of atomic excitation as well as the measurement of optical-emission cross sections.
A comparison of the results from both experiments i.e. the beam transport measurements at GSI and the diagnostic experiments performed at IAP concerning the plasma state, gave first indications of possible interaction processes between the nonneutral plasma and the ion beam.Kathrin Schultedoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33431Sat, 05 Apr 2014 14:16:02 +0200Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33291
In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/psi mesons, which is also investigated in this thesis.Jan Uphoffdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/33291Tue, 18 Mar 2014 09:53:36 +0100Development of terahertz vacuum electronics for array receivers
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/32281
Heterodyne array receivers are employed in radio astronomy to reduce the observing time needed for mapping extended sources. One of the main factors limiting the amount of pixels in terahertz receivers is the difficulty of generating a sufficient amount of local oscillator power. Another challenge is efficient diplexing and coupling of local oscillator and signal power to the detectors. These problems are attacked in this dissertation by proposing the application of two vacuum electronic terahertz amplifier types for the amplification of the LO-signal and by introducing a new method for finding the defects in a quasioptical diplexer.
A traveling wave tube (TWT) design based on a square helix slow wave structure (SWS) at 825 GHz is introduced. It exhibits a simulated small-signal gain of 18.3 dB and a 3-dB bandwidth of 69 GHz. In order to generate LO-power at even higher frequencies, the operation of an 850-GHz square helix TWT as a frequency doubler has been studied. A simulated conversion efficiency of 7% to 1700 GHz, comparable with the state-of-art solid-state doublers, has been achieved for an input power of 25 mW.
The other amplifier type discussed in this work is a 1-THz cascade backward wave amplifier based on a double corrugated waveguide SWS. Specifically, three input/output coupler types between a rectangular waveguide and the SWS are presented. The structures have been realized with microfabrication, and the results of loss measurements at 1 THz will be shown.
Diplexing of the LO- and signal beams is often performed with a Martin-Puplett interferometer. Misalignment and deformation of the quasioptical components causes the polarization state of the output signal to be incorrect, which leads to coupling losses. A ray-tracing program has been developed for studying the influence of such defects. The measurement results of the diplexer of a multi-pixel terahertz receiver operated at the APEX telescope have been analyzed with the program, and the results are presented. The program allows the quasioptical configuration of the diplexer to be corrected in order to obtain higher receiver sensitivity.Mikko Kotirantadoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/32281Wed, 20 Nov 2013 17:37:15 +0100Hanbury-Brown-Twiss interferometry within the UrQMD transport approach
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31556
In this thesis, Hanbury-Brown-Twiss (HBT) interferometry is used together with the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) to analyse the time and space structure of heavy-ion collisions.
The first chapter after the introduction gives an overview of the different types of models used in the field of heavy-ion collisions and a introduction of the UrQMD model in more detail. The next chapter explains the basics of Hanbury-Brown-Twiss correlations, including azimuthally sensitive HBT (asHBT).
Results section:
4. Charged Multiplicities from UrQMD
5. Formation time via HBT from pp collisions at LHC
6. HBT analysis of Pb+Pb collisions at LHC energies
7. HBT scaling with particle multiplicity
8. Compressibility from event-by-event HBT
9. Tilt in non-central collisions
10. Shape analysis of strongly-interacting systems
11. Measuring a twisted emission geometry
This thesis covers the standard integrated HBT analyses, extracting the Pratt-Bertsch radii, at LHC energies. The analyses at these energies showed a too soft expansion in UrQMD probably related to the absence of a partonic phase in UrQMD. The most promising results in this thesis at these energies are the restriction of the formation time to a value smaller than 0.8 fm/c and furthermore, the results from the asHBT analyses. In simulations of non-central heavy-ion collisions at energies of Elab= 6, 8 and 30 AGeV the validity of the formulae to calculate the tilt angle via asHBT has been checked numerically, even for the case of non-Gaussian, flowing sources. On this basis has been developed and test in the course of this thesis that allows to measure a scale dependent tilt angle experimentally. The signal should be strongest at FAIR energies. Gunnar Gräfdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31556Fri, 06 Sep 2013 11:15:08 +0200A kinetic theory for spin waves in yttrium-iron garnet
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31442
Spin waves in yttrium-iron garnet has been the subject of research for decades. Recently the report of Bose-Einstein condensation at room temperature has brought these experiments back into focus. Due to the small mass of quasiparticles compared to atoms for example, the condensation temperature can be much higher. With spin-wave quasiparticles, so-called magnons, even room temperature can be reached by externally injecting magnons. But also possible applications in information technologies are of interest. Using excitations as carriers for information instead of charges delivers a much more efficient way of processing data. Basic logical operations have already been realized. Finally the wavelength of spin waves which can be decreased to nanoscale, gives the opportunity to further miniaturize devices for receiving signals for example in smartphones.
For all of these purposes the magnon system is driven far out of equilibrium. In order to get a better fundamental understanding, we concentrate in the main part of this thesis on the nonequilibrium aspect of magnon experiments and investigate their thermalization process. In this context we develop formalisms which are of general interest and which can be adopted to many different kinds of systems.
A milestone in describing gases out of equilibrium was the Boltzmann equation discovered by Ludwig Boltzmann in 1872. In this thesis extensions to the Boltzmann equation with improved approximations are derived. For the application to yttrium-iron garnet we describe the thermalization process after magnons were excited by an external microwave field.
First we consider the Bose-Einstein condensation phenomena. A special property of thin films of yttrium-iron garnet is that the dispersion of magnons has its minimum at finite wave vectors which leads to an interesting behavior of the condensate. We investigate the spatial structure of the condensate using the Gross-Pitaevskii equation and find that the magnons can not condensate only at the energy minimum but that also higher Fourier modes have to be occupied macroscopically. In principle this can lead to a localization on a lattice in real space.
Next we use functional renormalization group methods to go beyond the perturbation theory expressions in the Boltzmann equation. It is a difficult task to find a suitable cutoff scheme which fits to the constraints of nonequilibrium, namely causality and the fluctuation-dissipation theorem when approaching equilibrium. Therefore the cutoff scheme we developed for bosons in the context of our considerations is of general interest for the functional renormalization group. In certain approximations we obtain a system of differential equations which have a similar transition rate structure to the Boltzmann equation. We consider a model of two kinds of free bosons of which one type of boson acts as a thermal bath to the other one. Taking a suitable initial state we can use our formalism to describe the dynamics of magnons such that an enhanced occupation of the ground state is achieved. Numerical results are in good agreement with experimental data.
Finally we extend our model to consider also the pumping process and the decrease of the magnon particle number till thermal equilibrium is reached again. Additional terms which explicitly break the U(1)-symmetry make it necessary to also extend the theory from which a kinetic equation can be deduced. These extensions are complicated and we therefore restrict ourselves to perturbation theory only. Because of the weak interactions in yttrium-iron garnet this provides already good results.Johannes Hickdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31442Wed, 14 Aug 2013 11:20:55 +0200Dynamical equilibration and transport coefficients of strongly interacting matter
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31147
Vitalii Ozvenchukdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31147Fri, 09 Aug 2013 09:21:00 +0200Effects of ionizing radiation on organotypic slice cultures
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31144
Mareike Müllerdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/31144Wed, 07 Aug 2013 12:34:39 +0200A unifying functional approach towards synaptic long-term plasticity
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/30104
Daniel Kriegdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/30104Wed, 26 Jun 2013 11:54:56 +0200Including gauge corrections to thermal leptogenesis
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/30063
Janine Hütigdoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/30063Tue, 11 Jun 2013 10:41:29 +0200Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results
http://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/29902
Mohammad Shahab Sanjaridoctoralthesishttp://publikationen.stub.uni-frankfurt.de/frontdoor/index/index/docId/29902Tue, 21 May 2013 09:51:40 +0200