### Refine

#### Year of publication

- 1999 (41) (remove)

#### Keywords

- Energie (4)
- Hadron (4)
- Quark (4)
- relativistic (4)
- Kollisionen schwerer Ionen (3)
- energy (3)
- quark (3)
- relativistisch (3)
- Dirac (2)
- Hadron (2)

- Kaon effective mass and energy from a novel chiral SU(3) symmetric Lagrangian (1999)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe

- Freeze out in hydrodynamical models (1999)
- We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze out through 3-dimensional hypersurfaces with space-like normal. We study some suggested solutions for this problem, and demonstrate it on one example. PACS: 24.10.Nz, 25.75.-q

- Rho meson broadening in hot and dense hadronic matter (1999)
- The modification of the width of rho mesons due to in-medium decays and collisions is evaluated. The decay width is calculated from the imaginary part of the one-loop selfenergy at finite temperature. The collision width is related to the cross sections of the rho + pion and the rho + nucleon reactions. A calculation based on an e ective Lagrangian shows the importance of including the direct pho pi - > pho pi scattering which is dominated by the a1 exchange. A large broadening of the spectral function is found, accompanied by a strength suppression at the pole. http://www.arxiv.org/abs/nucl-th/9812059

- Equilibrium and nonequilibrium effects in nucleus nucleus collisions (1999)
- Abstract: Local thermal and chemical equilibration is studied for central AqA collisions at 10.7 160 AGeV in the Ultrarelativis- . tic Quantum Molecular Dynamics model UrQMD . The UrQMD model exhibits strong deviations from local equilibrium at the high density hadron string phase formed during the early stage of the collision. Equilibration of the hadron resonance matter is established in the central cell of volume Vs125 fm3 at later stages, tG10 fmrc, of the resulting quasi-isentropic expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. PACS: 25.75.-q; 24.10.Lx; 24.10.Pa; 64.30.qt

- Critical review of quark gluon plasma signatures (1999)
- Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.

- Dissociation of expanding c anti-c states in heavy ion collisions (1999)
- We study J/psi suppression in AB collisions assuming that the charmonium states evolve from small, color transparent configurations. Their interaction with nucleons and nonequilibrated, secondary hadrons is simulated using the microscopic model UrQMD. The Drell-Yan lepton pair yield and the J/psi Drell-Yan ratio are calculated as a function of the neutral transverse energy in Pb+Pb collisions at 160 GeV and found to be in reasonable agreement with existing data.

- Relativistic quantum transport theory of hadronic matter : the coupled nucleon, Delta, and pion system (1999)
- We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed-time-path Green s function technique and the semiclassical, quasiparticle, and Born approximations are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and Delta's which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with N,Delta, and pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the nonrelativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free piN->Delta cross section is in agreement with the experimental data. Medium effects on the piN->Delta cross section and momentum-dependent Delta-decay width are shown to be substantial. PACS-numbers: 24.10.Jv, 13.75.Cs, 21.65.1f, 25.75.2q

- Gluon versus sea quark shadowing (1999)
- We calculate the shadowing of sea quarks and gluons and show that the shadowing of gluons is not simply given by the sea quark shadowing, especially at small x. The calculations are done in the lab frame approach by using the generalized vector meson dominance model. Here the virtual photon turns into a hadronic fluctuation long before the nucleus. The subsequent coherent interaction with more than one nucleon in the nucleus leads to the depletion sigma(gamma*A )< A*sigma(gamma * N) known as shadowing. A comparison of the shadowing of quarks to E665 data for 40Ca and 207Pb shows good agreement.

- Irreversibility, steady state, and nonequilibrium physics in relativistic heavy ion collisions (1999)
- Heavy ion collisions at ultrarelativistic energies offer the opportunity to study the irreversibility of multiparticle processes. Together with the many-body decays of resonances, the multiparticle processes cause the system to evolve according to Prigogine s steady states rather than towards statistical equilibrium. These results are general and can be easily checked by any microscopic string-, transport-, or cascade model for heavy ion collisions. The absence of pure equilibrium states sheds light on the di culties of thermal models in describing the yields and spectra of hadrons, especially mesons, in heavy ion collisions at bombarding energies above 10 GeV/nucleon. PACS numbers: 25.75.-q, 05.70.Ln, 24.10.Lx

- Direct emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary (1999)
- We discuss a model for the space-time evolution of ultrarelativistic heavy-ion collisions which employs relativistic hydrodynamics within one region of the forward light-cone, and microscopic transport theory (i.e. UrQMD) in the complement. Our initial condition consists of a quark-gluon plasma which expands hydrodynamically and hadronizes. After hadronization the solution eventually changes from expansion in local equilibrium to free streaming, as determined selfconsistently by the interaction rates between the hadrons and the local expansion rate. We show that in such a scenario the inverse slopes of the mT -spectra of multiple strange baryons ( Xi,Omega) are practically una ected by the purely hadronic stage of the reaction, while the flow of p's and Lambda's increases. Moreover, we find that the rather soft transverse expansion at RHIC energies (due to a first-order phase transition) is not washed out by strong rescattering in the hadronic stage. The earlier kinetic freeze-out as compared to SPS-energies results in similar inverse slopes (of the mT -spectra of the hadrons in the final state) at RHIC and SPS energies.