### Refine

#### Year of publication

#### Document Type

- Preprint (103)
- Article (19)
- Conference Proceeding (2)
- Review (1)

#### Keywords

- Kollisionen schwerer Ionen (9)
- Kollisionen schwerer Ionen (7)
- heavy ion collisions (7)
- heavy ion collisions (7)
- UrQMD (6)
- Drell-Yan (3)
- MEMOs (3)
- QGP (3)
- QGP (3)
- Quark Gluon Plasma (3)

#### Institute

- Indications for cluster melting from forward-backward charge fluctuations at RHIC energies (2006)
- We study forward-backward charge fluctuations to probe the correlations among produced particles in ultra relativistic heavy ion collisions. We develop a model that describes the forward-backward dynamical fluctuations and apply it to interpret the recent PHOBOS data. Within the present model, the dynamical fluctuations are related to the particle production mechanism via cluster decay and to long range correlations between the forward and backward rapidity hemispheres. We argue that with a tight centrality cut, PHOBOS may see a strong decrease of the dynamical fluctuations. Within the present model, this deterioration of the correlation among the produced hadrons can be interpreted as a sign for the production of a hot, dense and interacting medium.

- How can we explore the onset of deconfinement by experiment? (2007)
- There is little doubt that Quantumchromodynamics (QCD) is the theory which describes strong interaction physics. Lattice gauge simulations of QCD predict that in the m,T plane there is a line where a transition from confined hadronic matter to deconfined quarks takes place. The transition is either a cross over (at low m) or of first order (at high m). It is the goal of the present and future heavy ion experiment at RHIC and FAIR to study this phase transition at different locations in the m,T plane and to explore the properties of the deconfined phase. It is the purpose of this contribution to discuss some of the observables which are considered as useful for this purpose.

- Microscopic models for ultrarelativistic heavy ion collisions (1998)
- In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.

- Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions (1997)
- Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.

- Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions (1999)
- We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions at RHIC in a transport approach which combines hydrodynamics for the early, dense, deconfined stage of the reaction with a microscopic non-equilibrium model for the later hadronic stage at which the hydrodynamic equilibrium assumptions are not valid. With this ansatz we are able to self-consistently calculate the freeze-out of the system and determine space-time hypersurfaces for individual hadron species. The space-time domains of the freeze-out for several hadron species are found to be actually four-dimensional, and di er drastically for the individual hadrons species. Freeze-out radii distributions are similar in width for most hadron species, even though the is found to be emitted rather close to the phase boundary and shows the smallest freeze- out radii and times among all baryon species. The total lifetime of the system does not change by more than 10% when going from SPS to RHIC energies.

- Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach (1999)
- We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 3 depending on the hadron species.

- Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out (1998)
- We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E >= 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm 3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm 3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.

- Moments of event observable distributions and many-body correlations (1999)
- We investigate event-by-event fluctuations for ensembles with non-fixed multiplicity. Moments of event observable distributions, like total energy distribution, total transverse momentum distribution, etc, are shown to be related to the multi-body correlations present in the system. For classical systems, these moments reduce in the absence of any correlations to the mo- ments of particle inclusive momentum distribution. As a consequence, a zero value for the recently introduced Phi-variable is shown to indicate the van- ishing of two-body correlations from one part, and of correlations between multiplicity and momentum distributions from the other part. It is often misunderstood as a measure of the degree of equilibration in the system.

- Equation of state, spectra and composition of hot and dense infinite hadronic matter in a microscopic transport model (1998)
- Equilibrium properties of infinite relativistic hadron matter are investigated using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model. The simulations are performed in a box with periodic boundary conditions. Equilibration times depend critically on energy and baryon densities. Energy spectra of various hadronic species are shown to be isotropic and consistent with a single temperature in equilibrium. The variation of energy density versus temperature shows a Hagedorn-like behavior with a limiting temperature of 130 +/- 10 MeV. Comparison of abundances of different particle species to ideal hadron gas model predictions show good agreement only if detailed balance is implemented for all channels. At low energy densities, high mass resonances are not relevant; however, their importance raises with increasing energy density. The relevance of these different conceptual frameworks for any interpretation of experimental data is questioned.

- Mini black holes at the LHC : discovery through di-jet suppression, mono-jet emission and a supersonic boom in the quark-gluon plasma in ALICE, ATLAS and CMS (2006)
- We examine experimental signatures of TeV-mass black hole formation in heavy ion collisions at the LHC. We find that the black hole production results in a complete disappearance of all very high p_T (> 500 GeV) back-to-back correlated di-jets of total mass M > M_f ~ 1 TeV. We show that the subsequent Hawking-decay produces multiple hard mono-jets and discuss their detection. We study the possibility of cold black hole remnant (BHR) formation of mass ~ M_f and the experimental distinguishability of scenarios with BHRs and those with complete black hole decay. Finally we point out that a Heckler-Kapusta-Hawking plasma may form from the emitted mono-jets. In this context we present new simulation data of Mach shocks and of the evolution of initial conditions until the freeze-out.