### Refine

#### Year of publication

#### Document Type

- Article (416)
- Preprint (353)
- Doctoral Thesis (175)
- Conference Proceeding (59)
- Master's Thesis (8)
- Working Paper (8)
- Diplom Thesis (6)
- Bachelor Thesis (4)
- Other (4)
- Book (1)

#### Language

- English (1036) (remove)

#### Keywords

- Kollisionen schwerer Ionen (29)
- heavy ion collisions (23)
- Kollisionen schwerer Ionen (18)
- heavy ion collisions (18)
- Quark-Gluon-Plasma (17)
- quark-gluon plasma (12)
- Quark Gluon Plasma (9)
- equation of state (9)
- quark gluon plasma (9)
- Hadron (8)

#### Institute

- Physik (1036) (remove)

- Chopping and transport of high-intensity ion beams (2014)
- In this thesis, a novel 257 kHz chopper device was numerically developed, technically designed and experimentally commissioned; a 4-solenoid, low-energy ion beam transport line was numerically investigated, installed and experimentally commissioned; and a novel massless beam-separation system was numerically developed. The chopper combines a pulsed electric field with a static magnetic field in an ExB or Wien-filter type field configuration. Chopped beam pulses with a 257 kHz repetition rate and rise times of 110 ns were experimentally achieved using a 14 keV helium beam. Due to the achieved results, the complete LEBT line for the future Frankfurt Neutron Source FRANZ is ready to deliver a dc or a pulsed beam. At the same time, the LEBT section represents an attractive test stand for the study of low-energy ion beams. It combines magnetic lenses, which allow space-charge compensated beam transport, and a chopper system capable of producing short beam pulses in the hundred nanosecond range. Since these beam pulses are transported onwards, their longitudinal and transverse properties can be analyzed. The pulse duration and time of flight are well below the rise time for the space-charge compensation through residual gas ionization. This opens the possibility for dedicated investigations of the transport of short, low-energy beam pulses including longitudinal and transverse space-charge effects and of relevant issues like the dynamics of space-charge compensation and electron effects in short pulses.

- Strongly interacting parton-hadron matter in- and out-off equilibrium (2014)
- We study the equilibrium properties of strongly-interacting infinite parton-hadron matter, characterized by the transport coefficients such as shear and bulk viscosity and electric conductivity, and the non-equilibrium dynamics of heavy-ion collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach, which incorporates explicit partonic degrees of freedom in terms of strongly interacting quasiparticles (quarks and gluons) in line with an equation of state from lattice QCD as well as the dynamical hadronization and hadronic collision dynamics in the final reaction phase. We discuss in particular the possible origin for the strong elliptic flow v2 of direct photons observed at RHIC energies.

- Development of specially shaped laser beams for the optimized acceleration of particles (2014)
- The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 to 10^20 W/cm^2. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2)% when the targets have a thickness between 12 to 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

- Lattice QCD at finite temperature with Wilson fermions (2014)
- The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang. The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD). These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today. In the course of this thesis, the LQCD application cl2qcd has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. cl2qcd constitutes the first application for Wilson type fermions in OpenCL. It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential. Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite temperature transition in the Nf=2 chiral limit at zero chemical potential. It is not known if it is of first or second order. To this end, simulations utilising Twisted Mass Wilson fermions aiming at the chiral limit are presented in this thesis. Another possibility is the investigation of QCD at purely imaginary chemical potential. In this region, QCD is known to posses a rich phase structure, which can be used to constrain the phase diagram of QCD at real chemical potential and to clarify the nature of the Nf=2 chiral limit. This phase structure is studied within this thesis, in particular the nature of the Roberge-Weiss endpoint is mapped out using Wilson fermions.

- Time-resolved crystallization of deeply cooled liquid hydrogen isotopes (2014)
- This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions 1) The new method is established by the synergy of a liquid microjet of ~ 5 µm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. 2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ~ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald’s rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are investigated. It is found that the crystallization process starts earlier and lasts significantly longer compared to the pure substances with the maximum values between 20-50% ortho-deuterium content. A solely temperature based explanation for this effect can be excluded. The difference in the quantum character and hence effective size of the isotopes suggests a strong influence of the progressing liquid-solid-interface. Small dilutions of each para-hydrogen and ortho-deuterium with neon show an even more extended crystallization process compared to above isotopic mixtures. Additionally, the crystal is strongly altered in favor of the equilibrium lattice structure of neon.

- Spectral densities of the τ lepton in a global U(2)L × U(2)R linear sigma model with electroweak interaction (2011)
- This work is dedicated to the study of the vector and axial vector spectral functions of the τ lepton within the framework of a U(2)L × U(2)R Linear Sigma Model with electroweak interaction. As an effective field theory the Linear Sigma Model describes hadronic degrees of freedom based on the symmetries of the Standard Model. Therefore, the following section aims at giving a very general and concise introduction to the Standard Model and the meaning of symmetries for contemporary elementary particle physics. In the next section the SU(3)C symmetry group will be discussed in short, followed by an introduction to chiral symmetry SU(2)L × SU(2)R. In the last section of this chapter the Glashow-Weinberg-Salam theory of the local group SU(2)L × U(1)Y is presented. Important concepts of the theoretical framework of the Standard Model, such as the Noether Theorem, the Gauge Principle, Spontaneous Symmetry Breaking, and the Higgs Mechanism will be introduced in the context of these three symmetry groups. In Chapter 2 it will be first shown how the symmetries of the Standard Model are realised within the global U(2)L × U(2)R Linear Sigma Model and how electroweak interactions can be introduced to the model on the basis of local SU(2)L × U(1)Y symmetry transformations of the hadronic degrees of freedom. The vertices that are relevant for the vector and axial vector decay channels in weak τ decay are extracted from the Lagrangian with electroweak interaction in Chapter 3. This is followed by a short introduction to the Källen-Lehmann Representation of spectral functions and how these can be parametrised within the framework of this model (Chapter 4). The results of the vector and axial vector spectral functions are presented in Chapter 5 and 6.

- Tuning and optimization of the field distribution for 4-Rod Radio Frequency Quadrupole Linacs (2014)
- In this thesis, the tuning process of the 4-rod Radio Frequency Quadrupole has been analyzed and a theory for the prediction of the tuning plate's influence on the longitudinal voltage distribution was developed together with RF design options for the optimization of the fringe fields. The basic principles of the RFQ's particle dynamics and resonant behavior are introduced in the theory part of this thesis. All studies that are presented are based on the work on four RFQs of recent linac projects. These RFQs are described in one chapter. Here, the projects are introduced together with details about the RFQ parameters and performance. In the meantime two of these RFQs are in full operation at NSCL at MSU and FNAL. One is operating in the test phase of the MedAustron Cancer Therapy Center and the fourth one for LANL is about to be built. The longitudinal voltage distribution has been studied in detail with a focus on the influence of the RF design with tuning elements and parameters like the electrodes overlap or the distance between stems. The theory for simulation methods for the field flatness that were developed as part of this thesis, as well as its simulation with CST MWS have been analyzed and compared to measurements. The lumped circuit model has proven to predict results with an accuracy that can be used in the tuning process of 4-rod RFQs. Together with results from the tuning studies, the studies on the fringe fields of the 4-rod structure lead to a proposal for a 4-rod RFQ model with an improved field distribution in the transverse and longitudinal electric field.

- Modelling radiation fields of ion beams in tissue-like materials (2014)
- Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers. In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data. In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows: MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and lithium beams similar to the one for carbon beam. Well-adjusted biological dose distributions for H-1, He-4, C-12 and O-16 with a very flat spread-out Bragg peak (SOBP) plateau were calculated with MCHIT+MKM; MCHIT+MKM predicts less damage to healthy tissues in the entrance channel for SOBP He-4 and C-12 beams compared to H-1 and O-16 ones. No definitive advantages for oxygen ions with respect to carbon were found.