### Refine

#### Year of publication

- 2011 (10) (remove)

#### Document Type

- Article (7)
- Conference Proceeding (3)

#### Keywords

- NeuroXidence (1)
- awake monkey recordings (1)
- bivariate (1)
- effective connectivity (1)
- factor (1)
- generalized linear models (1)
- joint-spike-event (1)
- modulation of synchrony (1)
- multivariate (1)
- network topology (1)

#### Institute

- Frankfurt Institute for Advanced Studies (10) (remove)

- Bivariate and Multivariate NeuroXidence: A Robust and Reliable Method to Detect Modulations of Spike–Spike Synchronization Across Experimental Conditions (2011)
- Synchronous neuronal firing has been proposed as a potential neuronal code. To determine whether synchronous firing is really involved in different forms of information processing, one needs to directly compare the amount of synchronous firing due to various factors, such as different experimental or behavioral conditions. In order to address this issue, we present an extended version of the previously published method, NeuroXidence. The improved method incorporates bi- and multivariate testing to determine whether different factors result in synchronous firing occurring above the chance level. We demonstrate through the use of simulated data sets that bi- and multivariate NeuroXidence reliably and robustly detects joint-spike-events across different factors.

- Hagedorn states and thermalization : XLIX International Winter Meeting on Nuclear Physics, 24 - 28 January 2011, Bormio, Italy (2011)
- In recent years, Hagedorn states have been used to explain the equilibrium and transport properties of a hadron gas close to the QCD critical temperature. These massive resonances are shown to lower h/s to near the AdS/CFT limit close to the phase transition. A comparison of the Hagedorn model to recent lattice results is made and it is found that the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.

- LatticeQCD using OpenCL (2011)
- We report on our implementation of LatticeQCD applications using OpenCL. We focus on the general concept and on distributing different parts on hybrid systems, consisting of both CPUs (Central Processing Units) and GPUs (Graphic Processing Units).

- Extraction of network topology from multi-electrode recordings: is there a small-world effect? (2011)
- The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting generalized linear models on the neural responses, incorporating effects of the neurons’ self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks’ observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

- TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy (2011)
- Background: Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. Results: In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. Conclusions: TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.

- Learning the optimal control of coordinated eye and head movements (2011)
- Various optimality principles have been proposed to explain the characteristics of coordinated eye and head movements during visual orienting behavior. At the same time, researchers have suggested several neural models to underly the generation of saccades, but these do not include online learning as a mechanism of optimization. Here, we suggest an open-loop neural controller with a local adaptation mechanism that minimizes a proposed cost function. Simulations show that the characteristics of coordinated eye and head movements generated by this model match the experimental data in many aspects, including the relationship between amplitude, duration and peak velocity in head-restrained and the relative contribution of eye and head to the total gaze shift in head-free conditions. Our model is a first step towards bringing together an optimality principle and an incremental local learning mechanism into a unified control scheme for coordinated eye and head movements.

- Effect of the topology and delayed interactions in neuronal networks synchronization (2011)
- As important as the intrinsic properties of an individual nervous cell stands the network of neurons in which it is embedded and by virtue of which it acquires great part of its responsiveness and functionality. In this study we have explored how the topological properties and conduction delays of several classes of neural networks affect the capacity of their constituent cells to establish well-defined temporal relations among firing of their action potentials. This ability of a population of neurons to produce and maintain a millisecond-precise coordinated firing (either evoked by external stimuli or internally generated) is central to neural codes exploiting precise spike timing for the representation and communication of information. Our results, based on extensive simulations of conductance-based type of neurons in an oscillatory regime, indicate that only certain topologies of networks allow for a coordinated firing at a local and long-range scale simultaneously. Besides network architecture, axonal conduction delays are also observed to be another important factor in the generation of coherent spiking. We report that such communication latencies not only set the phase difference between the oscillatory activity of remote neural populations but determine whether the interconnected cells can set in any coherent firing at all. In this context, we have also investigated how the balance between the network synchronizing effects and the dispersive drift caused by inhomogeneities in natural firing frequencies across neurons is resolved. Finally, we show that the observed roles of conduction delays and frequency dispersion are not particular to canonical networks but experimentally measured anatomical networks such as the macaque cortical network can display the same type of behavior.

- Objective identification of residue ranges for the superposition of protein structures (2011)
- Background: The automation of objectively selecting amino acid residue ranges for structure superpositions is important for meaningful and consistent protein structure analyses. So far there is no widely-used standard for choosing these residue ranges for experimentally determined protein structures, where the manual selection of residue ranges or the use of suboptimal criteria remain commonplace. Results: We present an automated and objective method for finding amino acid residue ranges for the superposition and analysis of protein structures, in particular for structure bundles resulting from NMR structure calculations. The method is implemented in an algorithm, CYRANGE, that yields, without protein-specific parameter adjustment, appropriate residue ranges in most commonly occurring situations, including low-precision structure bundles, multi-domain proteins, symmetric multimers, and protein complexes. Residue ranges are chosen to comprise as many residues of a protein domain that increasing their number would lead to a steep rise in the RMSD value. Residue ranges are determined by first clustering residues into domains based on the distance variance matrix, and then refining for each domain the initial choice of residues by excluding residues one by one until the relative decrease of the RMSD value becomes insignificant. A penalty for the opening of gaps favours contiguous residue ranges in order to obtain a result that is as simple as possible, but not simpler. Results are given for a set of 37 proteins and compared with those of commonly used protein structure validation packages. We also provide residue ranges for 6351 NMR structures in the Protein Data Bank. Conclusions: The CYRANGE method is capable of automatically determining residue ranges for the superposition of protein structure bundles for a large variety of protein structures. The method correctly identifies ordered regions. Global structure superpositions based on the CYRANGE residue ranges allow a clear presentation of the structure, and unnecessary small gaps within the selected ranges are absent. In the majority of cases, the residue ranges from CYRANGE contain fewer gaps and cover considerably larger parts of the sequence than those from other methods without significantly increasing the RMSD values. CYRANGE thus provides an objective and automatic method for standardizing the choice of residue ranges for the superposition of protein structures. Additional files Additional file 1: Dependence of Q on the order parameter rank. The quantity Qi is plotted against the order parameter rank i for 9 different protein structure bundles. Additional file 2: Dependence of P on the clustering stage. The quantity Pi is plotted against the clustering stage i for 9 different protein structure bundles. Additional file 3: Dependence of CYRANGE results on the minimal cluster size parameter my. The sequence coverage (red) and RMSD (blue) of the residue ranges determined by CYRANGE were plotted as a function of my for 9 different protein structure bundles. The dotted vertical line indicates the default value, my = 8. Where CYRANGE found two domains, the RMSD values of the individual domains are shown in light and dark blue. Additional file 4: Dependence of CYRANGE results on the domain boundary extension parameter m. See Additional File 3 for details. Additional file 5: Dependence of CYRANGE results on the minimal gap width g. See Additional File 3 for details. Additional file 6: Dependence of CYRANGE results on the relative RMSD decrease parameter delta. See Additional File 3 for details. Additional file 7: Dependence of CYRANGE results on the absolute RMSD decrease parameter delta abs. See Additional File 3 for details. Additional file 8: Dependence of CYRANGE results on the gap penalty parameter gamma. See Additional File 3 for details. Additional file 9: Correlation between the sequence coverage from CYRANGE, FindCore and PSVS, and the GDT total score, GDT_TS. Each data point represents a protein shown in Figures 3 and 4. The coverage is the percentage of amino acid residues included in the residue ranges found by the different methods. The GDT_TS value is defined by GDT_TS = (P1 + P2 + P4 + P8)/4, where Pd is the fraction of residues that can be superimposed under a distance cutoff of d Å. Additional file 10: Correlation between the RMSD value for the residue ranges from CYRANGE, FindCore and PSVS, and the GDT total score, GDT_TS. Each data point represents one protein domain. See Additional File 9 for details.

- Synchronization hubs may arise from strong rhythmic inhibition during gamma oscillations in primary visual cortex : poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011, Stockholm, Sweden, 23 - 28 July 2011 (2011)
- Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. Parallel multiunit recordings from V1 in anesthetized cat were collected during the presentation of randomÂ sequences of drifting sinusoidal gratings at 12 fixed orientations while gamma oscillations were present. In agreement with the seminal work [1], most units were orientation selective to varying degrees and synchronization was evident in spike trainÂ crosscorrelograms computed between units with similar preferred orientations, particularly during theÂ presentation of optimal stimuli. Interestingly, a subset of units, which we refer to as synchronization hubs, wereÂ additionally found to synchronize with units having differing preferred orientations which was consistentÂ with a previous study [2]. Moreover, oscillatory patterning in spike train autocorrelograms was alsoÂ found to be strongest in units denoted as synchronization hubs, and synchronization hubs also tended to have narrower tuning curves relative to other units. We used simplified computational models of small networks of V1 neurons to demonstrate that neurons subject to a sufficiently strong level of inhibitory input can function as synchronization hubs. Neurons were endowedÂ either with integrate-and-fire or conductance-based dynamics and each neuron received a combinationÂ of excitatory (AMPA) synaptic inputs that were Poisson-distributed and inhibitory (GABA) inputs thatÂ were coherent at a gamma-frequency range. If the strength of rhythmic inhibition was increased for aÂ subset of neurons in the network, and excitation was increased simultaneously to maintain a fixed firingÂ rate, then these neurons produced stronger oscillatory patterning in their discharge probabilities. TheÂ oscillations in turn synchronized these neurons with other neurons in the network. Importantly, theÂ strength of synchronization increased with neurons of differing orientation preferences even though noÂ direct synaptic coupling existed between the hubs and the other neurons. Enhanced levels of inhibition account for the emergence of synchronization hubs in the following way:Â Inhibitory inputs exhibiting a gamma rhythm determine a time window within which a cell is likely toÂ discharge. Increased levels of inhibition narrow down this window further simultaneously leading to (i)Â even stronger oscillatory patterning of the neuron's activity and (ii) enhanced synchronization withÂ other neurons. This enables synchronization even between cells with differing orientation preferences.Â Additionally, the same increased levels of inhibition may be responsible for the narrow tuning curves ofÂ hub neurons. In conclusion, synchronization hubs may be the cells that interact most strongly with theÂ network of inhibitory interneurons during gamma oscillations in primary visual cortex.

- TRENTOOL: an open source toolbox to estimate neural directed interactions with transfer entropy (2011)
- Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. Poster presentation To investigate directed interactions in neural networks we often use Norbert Wiener's famous definition of observational causality. Wiener’s definition states that an improvement of the prediction of the future of a time series X from its own past by the incorporation of information from the past of a second time series Y is seen as an indication of a causal interaction from Y to X. Early implementations of Wiener's principle – such as Granger causality – modelled interacting systems by linear autoregressive processes and the interactions themselves were also assumed to be linear. However, in complex systems – such as the brain – nonlinear behaviour of its parts and nonlinear interactions between them have to be expected. In fact nonlinear power-to-power or phase-to-power interactions between frequencies are reported frequently. To cover all types of non-linear interactions in the brain, and thereby to fully chart the neural networks of interest, it is useful to implement Wiener's principle in a way that is free of a model of the interaction [1]. Indeed, it is possible to reformulate Wiener's principle based on information theoretic quantities to obtain the desired model-freeness. The resulting measure was originally formulated by Schreiber [2] and termed transfer entropy (TE). Shortly after its publication transfer entropy found applications to neurophysiological data. With the introduction of new, data efficient estimators (e.g. [3]) TE has experienced a rapid surge of interest (e.g. [4]). Applications of TE in neuroscience range from recordings in cultured neuronal populations to functional magnetic resonanace imaging (fMRI) signals. Despite widespread interest in TE, no publicly available toolbox exists that guides the user through the difficulties of this powerful technique. TRENTOOL (the TRansfer ENtropy TOOLbox) fills this gap for the neurosciences by bundling data efficient estimation algorithms with the necessary parameter estimation routines and nonparametric statistical testing procedures for comparison to surrogate data or between experimental conditions. TRENTOOL is an open source MATLAB toolbox based on the Fieldtrip data format. We evaluated the performance of the toolbox on simulation data and also a neuronal dataset that provides connections that are truly unidirectional to circumvent the following generic problem: typically, for any result of an analysis of directed interactions in the brain there will be a plausible explanation because of the combination of feedforward and feedback connectivity between any two measurement sites. Therefore, we estimated TE between the electroretinogram (ERG) and the LFP response in the tectum of the turtle (Chrysemys scripta elegans) under visual stimulation by random light pulses. In addition, we also investigated transfer entropy between the input to the light source (TTL pulse) and the ERG, to test the ability of TE to detect directed interactions between signals with vastly different properties. We found significant (p<0.0005) causal interactions from the TTL pulse to the ERG and from the ERG to the tectum – as expected. No significant TE was detected in the reverse direction. CONCLUSION: TRENTOOL is an easy to use implementation of transfer entropy estimation combined with statistical testing routines suitable for the analysis of directed interactions in neuronal data.