### Refine

- Magnetic neutrino scattering by crystals (1990)
- The magnetic dipole scattering of neutrinos by the electrostatic potentials of single atoms as well as crystals is investigated. It is shown that scattering by a rigid cubic lattice can amplify the neutrino-atom cross section by a factor of N1/3, N being the number of scatterers. However, comparing the results with typical weak-interaction cross sections, the effect seems to be not observable in experiment.

- Direct formation of quasimolecular 1s sigma vacancies in uranium-uranium collisions (1976)
- The direct (Coulomb) formation of electron vacancies in the 1sσ state of superheavy quasimolecules is investigated for the first time. Its dependence on the impact parameter, projectile energy, and its contribution from excitations into the continum and higher bound states are determined.

- Electron-translation effects in heavy-ion scattering (1981)
- The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for δ electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations.

- Phase transitions in nuclear matter (1980)
- Phase transitions in nuclear matter A method for the description of spin-isospin phase transitions in nuclear matter is developed. It allows a complete description of the pion condensation phase transition in the framework of the Landau-Migdal Fermi liquid theory. The equation of the order parameter is derived and the condensation energy is calculated. We study the influence of pion condensation on the nuclear equation of state and the temperature dependence of pion condensation. NUCLEAR STRUCTURE Description of pion-condensed ground state by Green's function technique.

- Collective excitations of the QED vacuum (1993)
- Using relativistic Green’s-function techniques we examined single-electron excitations from the occupied Dirac sea in the presence of strong external fields. The energies of these excited states are determined taking into account the electron-electron interaction. We also evaluate relativistic transition strengths incorporating retardation, which represents a direct measure of correlation effects. The shifts in excitation energies are computed to be lower than 0.5%, while the correlated transition strengths never deviate by more than 10% from their bare values. A major conclusion is that we found no evidence for collectivity in the electron-positron field around heavy and superheavy nuclei.

- Theory of induced molecular-orbital K X Rays in heavy-ion collisions (1974)
- The mechanisms of spontaneous and induced emission of radiation are derived from the Dirac equation in a rotating coordinate system. The molecular-orbital x-ray spectra exhibit a strong asymmetry with respect to the beam axis. The asymmetry peaks for the high-energy transitions, which can be used for spectroscopy of two-center orbitals.

- Solution of the Dirac equation for strong external fields (1972)
- The 1s bound state of superheavy atoms and molecules reaches a binding energy of -2mc2 at Z≈169. It is shown that the K shell is still localized in r space even beyond this critical proton number and that it has a width Γ (several keV large) which is a positron escape width for ionized K shells. The suggestion is made that this effect can be observed in the collision of very heavy ions (superheavy molecules) during the collision.

- Nuclear polarization in heavy atoms and superheavy quasiatoms (1991)
- We consider the contribution of nuclear polarization to the Lamb shift of K- and L-shell electrons in heavy atoms and quasiatoms. Our formal approach is based on the concept of effective photon propagators with nuclear-polarization insertions treating effects of nuclear polarization on the same footing as usual QED radiative corrections. We explicitly derive the modification of the photon propagator for various collective nuclear excitations and calculate the corresponding effective self-energy shift perturbatively. The energy shift of the 1s1/2 state in 92238U due to virtual excitation of nuclear rotational states is shown to be a considerable correction for atomic high-precision experiments. In contrast to this, nuclear-polarization effects are of minor importance for Lamb-shift studies in 82208Pb.

- Nuclear polarization contribution to the Lamb shift in heavy atoms (1989)
- The energy shift of the 1s1/2 state in 92238U due to virtual excitation of nuclear rotational modes is shown to be a considerable correction for atomic high-precision experiments. In contrast to this, nuclear polarization effects are of minor importance for Lamb-shift studies in 82208Pb.

- Theory of positron production in heavy-ion collisions (1981)
- Collisions of very heavy ions at energies close to the Coulomb barrier are discussed as a unique tool to study the behavior of the electron-positron field in the presence of strong external electromagnetic fields. To calculate the excitation processes induced by the collision dynamics, a semiclassical model is employed and adapted to describe the field-theoretical many-particle system. An expansion in the adiabatic molecular basis is chosen. Energies and matrix elements are calculated using the monopole approximation. In a supercritical (Z1+Z2≳173) quasiatomic system the 1s level joins the antiparticle continuum and becomes a resonance, rendering the neutral vacuum state unstable. Several methods of treating the corresponding time-dependent problem are discussed. A projection-operator technique is introduced for a fully dynamical treatment of the resonance. Positron excitation rates in s1/2 and p1/2 states are obtained by numerical solution of the coupled-channel equations and are compared with results from first- plus second-order perturbation theory. Calculations are performed for subcritical and supercritical collisions of Pb-Pb, Pb-U, U-U, and U-Cf. Strong relativistic deformations of the wave functions and the growing contributions from inner-shell bound states lead to a very steep Z dependence of positron production. The results are compared with available data from experiments done at GSI. Correlations between electrons and positrons are briefly discussed.