### Refine

#### Document Type

- Preprint (2)
- Diplom Thesis (1)
- Doctoral Thesis (1)

#### Keywords

- Hartree-Näherung (1)
- Hypermaterie (1)
- Kerne (1)
- Quantenhadrodynamik (1)
- Relativistische Quantenfeldtheorie (1)
- SU (3) - Modell (1)
- SU (3) - Symmetrie (1)
- SU(3)-model (1)
- SU(3)-symmetry (1)
- Schwinger-Dyson equation (1)

- Kerne, superschwere Elemente und Hyperkerne in einem chiralen SU(3)-Modell (1999)
- In der vorliegenden Arbeit wurde ein chirales SU(3)-Modell auf verschiedene Erscheinungsformen endlicher Kernmaterie angewendet. Das Modell basiert auf chiraler Symmetrie in nichtlinearer Realisierung. Die Symmetrie muss spontan gebrochen werden um die beobachtete Massendifferenz zwischen skalaren und pseudoskalaren Mesonen reproduzieren zu können. Um den pseudoskalaren Mesonen eine endliche Masse zu geben ist eine explizite Brechung der chiralen Symmetrie nötig.

- Self-consistent calculations of hadron properties at non-zero temperature (2005)
- This work is dedicated to the investigation of nuclear matter at non-zero temperatures within an effective hadronic model based on the Walecka model. It includes fermions as well as a vector omega meson and a scalar sigma meson where for the latter a quartic self-interaction has been considered. The coupling constants have been adapted to the saturation properties of infinite nuclear matter. A set of self-consistent Schwinger-Dyson equations has been set up for all included particles within the Cornwall-Jackiw-Tomboulis formalism. This has been expanded to non-zero temperatures via the imaginary time formalism. Beside tree-level two different stages of approximations have been considered: the Hartree approximation which takes into account the double-bubble diagram for the scalar meson, and an improved approximation where in addition two-particle irreducible sunset diagrams for all fields were included. In the Hartree-approximation the Schwinger-Dyson equations can be solved by quasi-particle ansaetze, while in the improved approximation spectral functions with non-zero widths have to be introduced. The Schwinger-Dyson equations are solved by the fully dressed propagators. Comparing the two levels of approximation shows the influence of finite widths on the temperature dependence of the particle properties. The consideration of finite widths in fact has a significant influence on the transition from a phase of heavy nucleons to a transition of light nucleons, observed in the Walecka-model. The temperature dependence is weakend when finte widths are taken into account.

- Superheavy nuclei in a chiral hadronic model (2000)
- Superheavy nuclei are investigated in a nonlinear chiral SU(3)-model. The proton number Z=120 and neutron numbers of N=172, 184 and 198 are predicted to be magic. The charge distributions and alpha-decay chains hint towards a hollow stucture.

- Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model (2001)
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.