### Refine

#### Year of publication

- 1997 (10) (remove)

#### Keywords

- Kollisionen schwerer Ionen (3)
- Quark-Gluon-Plasma (3)
- QGP (2)
- Quark-Gluon-Plasma (2)
- SPS (2)
- equation of state (2)
- quark-gluon plasma (2)
- quark-gluon-plasma (2)
- Drell-Yan production (1)
- Drell-Yan-Prozess (1)

- Hadron production from a hadronizing quark gluon plasma (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source versus a time-dependent, non-equilibrium hadronization off a quark gluon plasma droplet. Due to the time-dependent particle evaporation off the hadronic surface in the latter approach the hadron ratios change (by factors of / 5) in time. The overall particle yields then reflect time averages over the actual thermodynamic properties of the system at a certain stage of evolution.

- Hadron production in relativistic nuclear collisions : Thermal hadron source or hadronizing quark-gluon plasma? (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source vs. a time-dependent, nonequilibrium hadronization o a quark-gluon plasma droplet. Due to the time-dependent particle evapora- tion o the hadronic surface in the latter approach the hadron ratios change (by factors of <H 5) in time. Final particle yields reflect time averages over the actual thermodynamic properties of the system at a certain stage of the evolution. Calculated hadron, strangelet and (anti-)cluster yields as well as freeze-out times are presented for di erent systems. Due to strangeness distillation the system moves rapidly out of the T, µq plane into the µs-sector. Classif.: 25.75.Dw, 12.38.Mh, 24.85.+p

- Hadron and hadron cluster production in a hydrodynamical model including particle evaporation (1997)
- We discuss the evolution of the mixed phase at RHIC and SPS within boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we also consider evaporation of particles o the surface of the fluid. The back-reaction of this evaporation process on the dynamics of the fluid shortens the lifetime of the mixed phase. In our model this lifetime of the mixed phase is d 12 fm/c in Au + Au at RHIC and d 6.5 fm/c in Pb + Pb at SPS, even in the limit of vanishing transverse expansion velocity. Strong separation of strangeness occurs, especially in events (or at rapidities) with relatively high initial net baryon and strangeness number, enhancing the multiplicity of MEMOs (multiply strange nuclear clusters). If antiquarks and antibaryons reach saturation in the course of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons to deuterons may exceed 0.3 and even 4He/4He > 0.1. In S + Au at SPS we find only N/N H 0.1. Due to fluctuations, at RHIC even negative baryon number at midrapidity is possible in individual events, so that the antibaryon and antibaryon-cluster yields exceed those of the corresponding baryons and clusters.

- A Microscopic calculation of secondary Drell-Yan production in heavy ion collisions (1997)
- A study of secondary Drell-Yan production in nuclear collisions is presented for SPS energies. In addition to the lepton pairs produced in the initial collisions of the projectile and target nucleons, we consider the potentially high dilepton yield from hard valence antiquarks in produced mesons and antibaryons. We calculate the secondary Drell-Yan contributions taking the collision spectrum of hadrons from the microscopic model URQMD. The con- tributions from meson-baryon interactions, small in hadron-nucleus interac- tions, are found to be substantial in nucleus-nucleus collisions at low dilepton masses. Preresonance collisions of partons may further increase the yields.

- Phase transition of a finite quark-gluon plasma (1997)
- The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.

- Direct photons in Pb+Pb at CERN-SPS from microscopic transport theory (1997)
- Direct photon production in central Pb+Pb collisions at CERN-SPS energy is calculated within the relativistic microscopic transport model UrQMD, and within distinctly di erent versions of relativistic hydrodynamics. We find that in UrQMD the local momentum distributions of the secondaries are strongly elongated along the beam axis initially. Therefore, the preequilibrium contribution dominates the photon spectrum at transverse momenta above H 1.5 GeV. The hydrodynamics prediction of a strong correlation between the temperature and radial expansion velocities on the one hand and the slope of the transverse momentum distribution of direct photons on the other hand thus is not recovered in UrQMD. The rapidity distribution of direct photons in UrQMD reveals that the initial conditions for the longitudinal expansion of the photon source (the meson fluid ) resemble rather boostinvariance than Landau-like flow.

- "Pressure equilibration" in ultrarelativistic heavy ion collisions (1997)
- We study the time scale for pressure equilibration in heavy ion collisions at AGS energies within the three-fluid hydrodynamical model and a microscopic cascade model (UrQMD). We find that kinetic equilibrium is reached in both models after a time of 5 fm/c (center-of-mass time). Thus, observables which are sensitive to the early stage of the reaction differ considerably from the expectations within the instant thermalization scenario (one-fluid hydrodynamical model).

- Microscopic analysis of thermodynamic parameters from 160 MeV/n - 160 GeV/n (1997)
- Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient ''equilibrium'' state remains ambiguous.

- Search for production of strangelets in quark matter using particle correlations (1997)
- We present a new technique for observing the strangelet production in quark matter based on unlike particle correlations. A simulation is presented with a two-phase thermodynamical model.

- Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions (1997)
- Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.