### Refine

#### Keywords

- Zustandsgleichung (3)
- Dirac (2)
- Dirac-Brueckner theory (2)
- Dirac-Brückner Theorie (2)
- Energie (2)
- Kollisionen schwerer Ionen (2)
- Nukleon (2)
- bound state (2)
- energy (2)
- equation of state (2)

#### Institute

- Bound states of anti-nucleons in finite nuclei (2002)
- We study the bound states of anti-nucleons emerging from the lower continuum in finite nuclei within the relativistic Hartree approach including the contributions of the Dirac sea to the source terms of the meson fields. The Dirac equation is reduced to two Schr¨odinger-equivalent equations for the nucleon and the anti-nucleon respectively. These two equations are solved simultaneously in an iteration procedure. Numerical results show that the bound levels of anti-nucleons vary drastically when the vacuum contributions are taken into account. PACS number(s): 21.10.-k; 21.60.-n; 03.65.Pm

- Effect of isovector-scalar meson on neutron star matter in strong magnetic fields (2005)
- We study the effects of isovector-scalar meson delta on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the delta-field leads to a remarkable splitting of proton and neutron effective masses. The strength of delta-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at B < 10^15G but becomes softer at stronger magnetic field after including the delta-field. The AMM terms can affect the system merely at ultrastrong magnetic field(B > 10^19G). In the range of 10^15 G - 10^18 G the properties of neutron-star matter are found to be similar with those without magnetic fields.

- Microscopic models for ultrarelativistic heavy ion collisions (1998)
- In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.