### Refine

#### Year of publication

- 2005 (15) (remove)

#### Keywords

- heavy-ion collisions (2)
- Charm Produktion (1)
- Charmonium (1)
- Collective flow (1)
- D-meson spectral density (1)
- DN interaction (1)
- Hadron (1)
- Kollisionen des schweren Ions (1)
- Kollisionen schwerer Ionen (1)
- Lambda-c(2593) resonance (1)

#### Institute

- Summary of theoretical contributions (2005)
- Results from various theoretical approaches and ideas presented at this exciting meeting (summary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP - 2005)) are reviewed. I also point towards future directions, in particular hydrodynamic behaviour induced by jets traveling through the quark-gluon plasma, which might be worth looking at in more detail.

- Probing the equation of state with pions (2005)
- The influence of the isospin-independent, isospin- and momentum-dependent equation of state (EoS), as well as the Coulomb interaction on the pion production in intermediate energy heavy ion collisions (HICs) is studied for both isospin-symmetric and neutron-rich systems. The Coulomb interaction plays an important role in the reaction dynamics, and strongly influences the rapidity and transverse momentum distributions of charged pions. It even leads to the pi- pi+ ratio deviating slightly from unity for isospin-symmetric systems. The Coulomb interaction between mesons and baryons is also crucial for reproducing the proper pion flow since it changes the behavior of the directed and the elliptic flow components of pions visibly. The EoS can be better investigated in neutron-rich system if multiple probes are measured simultaneously. For example, the rapidity and the transverse momentum distributions of the charged pions, the pi- pi+ ratio, the various pion flow components, as well as the difference of pi+-pi- flows. A new sensitive observable is proposed to probe the symmetry potential energy at high densities, namely the transverse momentum distribution of the elliptic flow difference [Delta v_2^pi+ - pi-(p_t rm c.m.].

- Probing the density dependence of the symmetry potential in intermediate energy heavy ion collisions (2005)
- Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Delta-/Delta++ and pi -/pi + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the pi -/pi + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the pi -/pi + ratio significantly, though it alters only slightly the pi- and pi+ total yields. The pi- yields, especially at midrapidity or at low transverse momenta and the p-/pi+ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K0 and K+ mesons, is also investigated.

- Probing the density dependence of the symmetry potential at low and high densities (2005)
- We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.

- Pion and thermal photon spectra as a possible signal for a phase transition (2005)
- We calculate thermal photon and neutral pion spectra in ultrarelativistic heavy-ion collisions in the framework of three-fluid hydrodynamics. Both spectra are quite sensitive to the equation of state used. In particular, within our model, recent data for S + Au at 200 AGeV can only be understood if a scenario with a phase transition (possibly to a quark-gluon plasma) is assumed. Results for Au+Au at 11 AGeV and Pb + Pb at 160 AGeV are also presented.

- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k

- Multifragmentation, clustering, and coalescence in nuclear collisions (2005)
- Nuclear collisions at intermediate, relativistic, and ultra-relativistic energies offer unique opportunities to study in detail manifold fragmentation and clustering phenomena in dense nuclear matter. At intermediate energies, the well known processes of nuclear multifragmentation -- the disintegration of bulk nuclear matter in clusters of a wide range of sizes and masses -- allow the study of the critical point of the equation of state of nuclear matter. At very high energies, ultra-relativistic heavy-ion collisions offer a glimpse at the substructure of hadronic matter by crossing the phase boundary to the quark-gluon plasma. The hadronization of the quark-gluon plasma created in the fireball of a ultra-relativistic heavy-ion collision can be considered, again, as a clustering process. We will present two models which allow the simulation of nuclear multifragmentation and the hadronization via the formation of clusters in an interacting gas of quarks, and will discuss the importance of clustering to our understanding of hadronization in ultra-relativistic heavy-ion collisions.

- Mach shocks induced by partonic jets in expanding quark-gluon plasma (2005)
- We study Mach shocks generated by fast partonic jets propagating through a deconfined strongly-interacting matter. Our main goal is to take into account different types of collective motion during the formation and evolution of this matter. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. The observed broadening of the near-side two-particle correlations in pseudorapidity space is explained by the Bjorken-like longitudinal expansion. Three-particle correlation measurements are proposed for a more detailed study of the Mach shock waves.

- Evidence for psi' regeneration in heavy ion collisions (2005)
- The study of hidden charm production is an important part of the heavy ion program. The standard approach to this problem [1] assumes that c¯c bound states are created only at the initial stage of the reaction and then partially destroyed at later stages due to interactions with the medium [2, 3, 4].

- Event-by-event analysis of baryon-strangeness correlations : pinning down the critical temperature and volume of QGP formation (2005)
- The recently proposed baryon-strangeness correlation (C_BS) is studied with a string-hadronic transport model (UrQMD) for various energies from E_lab=4 AGeV to \sqrt s=200 AGeV. It is shown that rescattering among secondaries can not mimic the predicted correlation pattern expected for a Quark-Gluon-Plasma. However, we find a strong increase of the C_BS correlation function with decreasing collision energy both for pp and Au+Au/Pb+Pb reactions. For Au+Au reactions at the top RHIC energy (\sqrt s=200 AGeV), the C_BS correlation is constant for all centralities and compatible with the pp result. With increasing width of the rapidity window, C_BS follows roughly the shape of the baryon rapidity distribution. We suggest to study the energy and centrality dependence of C_BS which allow to gain information on the onset of the deconfinement transition in temperature and volume.