### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (2)
- Equation of state (1)
- Gluon (1)
- HICs (1)
- Heavy ion collisions (1)
- Hohe Energie (1)
- Kosmischer Strahl (1)
- LHC (1)
- Local thermodynamical equilibrium (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)

#### Institute

- Probing the density dependence of the symmetry potential in intermediate energy heavy ion collisions (2005)
- Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Delta-/Delta++ and pi -/pi + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the pi -/pi + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the pi -/pi + ratio significantly, though it alters only slightly the pi- and pi+ total yields. The pi- yields, especially at midrapidity or at low transverse momenta and the p-/pi+ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K0 and K+ mesons, is also investigated.

- Global observables and secondary interactions in central Au+Au reactions at sqrt[s]=200A GeV (2000)
- The ultrarelativistic quantum molecular dynamics model (UrQMD) is used to study global observables in central reactions of Au+Au at sqrt[s]=200A GeV at the Relativistic Heavy Ion Collider (RHIC). Strong stopping governed by massive particle production is predicted if secondary interactions are taken into account. The underlying string dynamics and the early hadronic decoupling implies only small transverse expansion rates. However, rescattering with mesons is found to act as a source of pressure leading to additional flow of baryons and kaons, while cooling down pions.

- Probing the density dependence of the symmetry potential at low and high densities (2005)
- We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.

- Current status of quark gluon plasma signals (2001)
- Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.

- Equation of state of resonance-rich matter in the central cell in heavy-ion collisions at sqrt s =200 A GeV (2000)
- The equilibration of hot and dense nuclear matter produced in the central cell of central Au+Au collisions at RHIC (sqrt s = 200 A GeV) energies is studied within a microscopic transport model. The pressure in the cell becomes isotropic at t approx 5 fm/c after beginning of the collision. Within the next 15 fm/c the expansion of matter in the cell proceeds almost isentropically with the entropy per baryon ratio S/A approx 150, and the equation of state in the (P,epsilon) plane has a very simple form, P=0.15 epsilon. Comparison with the statistical model of an ideal hadron gas indicates that the time t approx 20 fm/c may be too short to reach the fully equilibrated state. Particularly, the creation of long-lived resonance-rich matter in the cell decelerates the relaxation to chemical equilibrium. This resonance-abundant state can be detected experimentally after the thermal freeze-out of particles.

- Enhanced strange particle yields : signal of a phase of massless particles? (2000)
- The yields of strange particles are calculated with the UrQMD model for p,Pb(158 AGeV)Pb collisions and compared to experimental data. The yields are enhanced in central collisions if compared to proton induced or peripheral Pb+Pb collisions. The enhancement is due to secondary interactions. Nevertheless, only a reduction of the quark masses or equivalently an increase of the string tension provides an adequate description of the large observed enhancement factors (WA97 and NA49). Furthermore, the yields of unstable strange resonances as the Lambda star(1520) resonance or the phi meson are considerably affected by hadronic rescattering of the decay products.

- Equilibrium and non-equilibrium effects in relativistic heavy ion collisions (1999)
- The hypothesis of local equilibrium (LE) in relativistic heavy ion collisions at energies from AGS to RHIC is checked in the microscopic transport model. We find that kinetic, thermal, and chemical equilibration of the expanding hadronic matter is nearly reached in central collisions at AGS energy for t >_ fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing bombarding energies. The origin of these deviations is traced to the irreversible multiparticle decays of strings and many-body (N >_ 3) decays of resonances. The violations of LE indicate that the matter in the cell reaches a steady state instead of idealized equilibrium. The entropy density in the cell is only about 6% smaller than that of the equilibrium state.

- Transport calculation of dilepton production at ultrarelativistic energies (1999)
- Dilepton spectra are calculated within the microscopic transport model UrQMD and compared to data from the CERES experiment. The invariant mass spectra in the region between 300 MeV and 600 MeV depend strongly on the mass dependence of the rho meson decay width which is not sufficiently determined by the Vector Meson Dominance model. A consistent explanation of both the recent Pb+Au data and the proton induced data can be given without additional medium effects.

- Microscopic calculations of stopping and flow from 160AMeV to 160AGeV (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.

- Chemical freeze-out parameters at RHIC from microscopic model calculations (2001)
- The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for the period of 10-15 fm/c. Within this time the matter in the cell expands nearly isentropically with the entropy to baryon ratio S/A = 150 - 170. Thermodynamic characteristics of the system at AGS and at SPS energies at the endpoints of this stage are very close to the parameters of chemical and thermal freeze-out extracted from the thermal fit to experimental data. Predictions are made for the full RHIC energy square root s = 200$ AGeV. The formation of a resonance-rich state at RHIC energies is discussed.