### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (2)
- Equation of state (1)
- Gluon (1)
- HICs (1)
- Heavy ion collisions (1)
- Hohe Energie (1)
- Kosmischer Strahl (1)
- LHC (1)
- Local thermodynamical equilibrium (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)

#### Institute

- Local equilibrium in heavy-ion collisions: microscopic analysis of a central cell versus infinite matter (2000)
- REVTEX, 27 pages incl. 10 figures and 3 tables; Phys. Rev. C (in press) Journal-ref: Phys.Rev. C62 (2000) 064906. We study the local equilibrium in the central V = 125 fm3 cell in heavy-ion collisions at energies from 10.7 A GeV (AGS) to 160 A GeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in the cell are compared with those of infinite nuclear matter, as calculated within the same model. The agreement between the spectra in the two systems is established for times t >= 10 fm/c in the central cell. The cell results do not deviate noticeably from the infinite matter calculations with rising incident energy, in contrast to the apparent discrepancy with predictions of the statistical model (SM) of an ideal hadron gas. The entropy of this state is found to be very close to the maximum entropy, while hadron abundances and energy spectra differ significantly from those of the SM.

- Nonequilibrium models of relativistic heavy-ion collisions (2004)
- To be published in J. Phys. G - Proceedings of SQM 2004 : We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A.GeV: here the hydrodynamic model has predicted the collapse of the v2-flow ~ 10 A.GeV; at 40 A.GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density r b. Moreover, the connection of the elliptic flow v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. Furthermore, the change in sign of v1, v2 closer to beam rapidity is related to the occurence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A.GeV.

- Phi-Meson production at RHIC, strong color fields and intrinsic transverse momenta (2004)
- We investigate the effects of strong color fields and of the associated enhanced intrinsic transverse momenta on the phi-meson production in ultrarelativistic heavy ion collisions at RHIC. The observed consequences include a change of the spectral slopes, varying particle ratios, and also modified mean transverse momenta. In particular, the composition of the production processes of phi-mesons, that is, direct production vs. coalescence-like production, depends strongly on the strength of the color fields and intrinsic transverse momenta and thus represents a sensitive probe for their measurement.

- Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions (2004)
- We investigate hadron production as well as transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data on transverse mass spectra from pp, pA and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~5 A·GeV, furthermore, the measured K± transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. We investigate various scenarios to explore their potential effects on the K± spectra. In particular the initial state Cronin effect is found to play a substantial role at top SPS and RHIC energies. However, the maximum in the K+/..+ ratio at 20 to 30 A·GeV is missed by 40% and the approximately constant slope of the K± spectra at SPS energies is not reproduced either. Our systematic analysis suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential µq and temperature T- should be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.

- Review of QGP signatures - ideas versus observables (2004)
- We investigate hadron production and transverse hadron spectra in nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (UrQMD and HSD) based on quark, diquark, string and hadronic degrees of freedom. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the ’kink’) is described well by both approaches without involving a phase transition. However, the maximum in the K+ p+ ratio at 20 to 30 A·GeV (the ’horn’) is missed by ~ 40%. Also, at energies above ~5 A·GeV, the measured K± mT-spectra have a larger inverse slope than expected from the models. Thus the pressure generated by hadronic interactions in the transport models at high energies is too low. This finding suggests that the additional pressure - as expected from lattice QCD at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central heavy-ion collisions. Finally, we discuss the emergence of density perturbations in a first-order phase transition and why they might affect relative hadron multiplicities, collective flow, and hadron mean-free paths at decoupling. A minimum in the collective flow v2 excitation function was discovered experimentally at 40 A·GeV - such a behavior has been predicted long ago as signature for a first order phase transition.

- A fast hybrid approach to air shower simulations and applications (2003)
- The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of efficient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to reproduce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite efficient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.

- Global observables and secondary interactions in central Au+Au reactions at sqrt[s]=200A GeV (2000)
- The ultrarelativistic quantum molecular dynamics model (UrQMD) is used to study global observables in central reactions of Au+Au at sqrt[s]=200A GeV at the Relativistic Heavy Ion Collider (RHIC). Strong stopping governed by massive particle production is predicted if secondary interactions are taken into account. The underlying string dynamics and the early hadronic decoupling implies only small transverse expansion rates. However, rescattering with mesons is found to act as a source of pressure leading to additional flow of baryons and kaons, while cooling down pions.