### Refine

#### Year of publication

#### Document Type

- Preprint (16)
- Conference Proceeding (3)
- Article (1)
- Review (1)

#### Keywords

- MEMOs (2)
- hadronic matter (2)
- quark gluon plasma (2)
- Baryon (1)
- D-meson spectral density (1)
- DN interaction (1)
- Dichte (1)
- Elementarteilchen (1)
- Elementary particle (1)
- Hadron (1)

#### Institute

- The outer crust of non-accreting cold neutron stars (2006)
- The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.

- Signals of the QCD Phase Transition in the Heavens (2007)
- The modern phase diagram of strongly interacting matter reveals a rich structure at high-densities due to phase transitions related to the chiral symmetry of quantum chromodynamics (QCD) and the phenomenon of color superconductivity. These exotic phases have a significant impact on high-density astrophysics, such as the properties of neutron stars, and the evolution of astrophysical systems as proto-neutron stars, core-collapse supernovae and neutron star mergers. Most recent pulsar mass measurements and constraints on neutron star radii are critically discussed. Astrophysical signals for exotic matter and phase transitions in high-density matter proposed recently in the literature are outlined. A strong first order phase transition leads to the emergence of a third family of compact stars besides white dwarfs and neutron stars. The different microphysics of quark matter results in an enhanced r-mode stability window for rotating compact stars compared to normal neutron stars. Future telescope and satellite data will be used to extract signals from phase transitions in dense matter in the heavens and will reveal properties of the phases of dense QCD. Spectral line profiles out of x-ray bursts will determine the mass-radius ratio of compact stars. Gravitational wave patterns from collapsing neutron stars or neutron star mergers will even be able to constrain the stiffness of the quark matter equation of state. Future astrophysical data can therefore provide a crucial cross-check to the exploration of the QCD phase diagram with the heavy-ion program of the CBM detector at the FAIR facility.

- Properties of exotic matter for heavy ion searches (1997)
- We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (Metastable Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and future heavy ion searches. The strong and weak decays are discussed separately to distinguish between long-lived and short-lived candidates where the former ones are detectable in present heavy ion experiments while the latter ones in future heavy ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass to charge ratio like a anti deuteron (M/Z 2) but masses of A=10 to 16. We predict also many short-lived candidates, both in quark and in hadronic form, which can be highly charged. Purely hyperonic nuclei like the (2 02 ) are bound and have a negative charge while carrying a positive baryon number. We demonstrate also that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy ion colliders.

- Phase transition to hyperon matter in neutron stars (2002)
- Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated. We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R ~ 8 km. PACS: 26.60+c, 21.65+f, 97.60.Gb, 97.60.Jd

- Phase transition to hyperon matter in neutron stars (2002)
- Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated.We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R 8 km.

- Particle ratios at RHIC : effective hadron masses and chemical freeze-out (2002)
- The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) theta - omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent e ective hadron masses and e ective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three di erent parametrizations of the model, which show di erent types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters di er considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out di er up to 150 MeV from their vacuum values.

- Open-charm enhancement at FAIR? (2006)
- We have calculated the D-meson spectral density at finite temperature within a self-consistent coupled-channel approach that generates dynamically the Lambda_c (2593) resonance. We find a small mass shift for the D-meson in this hot and dense medium while the spectral density develops a sizeable width. The reduced attraction felt by the D-meson in hot and dense matter together with the large width observed have important consequences for the D-meson production in the future CBM experiment at FAIR.

- Nuclei in a chiral SU(3) model (1998)
- Nuclei can be described satisfactorily in a nonlinear chiral SU(3)-framework, even with standard potentials of the linearmodel. The condensate value of the strange scalar meson is found to be important for the properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU(3). We discuss inherent problems with chiral SU(3) models regarding hyperon optical potentials.

- Meisterhaft erklärt, humorvoll geschrieben : Top-Physikerin führt durch höherdimensionale gekrümmte Räume (2006)
- Rezension zu: Lisa Randall : Verborgene Universen : Eine Reise in den extradimensionalen Raum, Fischer Verlag, Frankfurt 2006, ISBN-13: 978-3-10-062805-3, 448 Seiten, 19,90 Euro.

- Mass modification of D-meson in hot hadronic matter (2003)
- We evaluate the in-medium D and -meson masses in hot hadronic matter induced by interactions with the light hadron sector described in a chiral SU(3) model. The e ective Lagrangian approach is generalized to SU(4) to include charmed mesons. We find that the D-mass drops substantially at finite temperatures and densities, which open the channels of the decay of the charmonium states ( 2, c, J/ ) to D pairs in the thermal medium. The e ects of vacuum polarisations from the baryon sector on the medium modification of the D-meson mass relative to those obtained in the mean field approximation are investigated. The results of the present work are compared to calculations based on the QCD sum-rule approach, the quark-meson coupling model, chiral perturbation theory, as well as to studies of quarkonium dissociation using heavy quark potential from lattice QCD.