### Refine

#### Year of publication

#### Keywords

- Kollision (2)
- collision (2)
- equation of state (2)
- Cluster integrals (1)
- Drell-Yan ratio (1)
- Equation of state (1)
- Hadron (1)
- Hadron Gas Modell (1)
- Heavy ion collisions (1)
- J/psi Erhöhung (1)

#### Institute

- Baryon number and electric charge fluctuations in Pb+Pb collisions at SPS energies (2006)
- Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrate that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.

- Pion chemical equilibration in heavy ion collisions : relativistic quantum molecular dynamic analysis (1992)
- In the framework of relativistic quantum molecular dynamics the authors find that the pion system produced in central heavy-ion collisions at Elab/A approximately 1 GeV/nucl. is out of chemical equilibrium. Pion chemical potential is large and decreases during the expansion stage.

- A self-consistent equation of state for nuclear matter (1993)
- The authors formulate a phenomenological extension of the mean-field theory approach and define a class of thermodynamically self-consistent equations of state for nuclear matter. A new equation of state of this class is suggested and examined in detail.

- Chemical freezeout in relativistic A+A collisions: is it close to the QGP? (1997)
- Preliminary experimental data for particle number ratios in the collisions of Au+Au at the BNL AGS (11A GeV/c) and Pb+Pb at the CERN SPS (160A GeV/c) are analyzed in a thermodynamically consistent hadron gas model with excluded volume. Large values of temperature, T = 140 185 MeV, and baryonic chemical potential, µb = 590 270 MeV, close to the boundary of the quark-gluon plasma phase are found from fitting the data. This seems to indicate that the energy density at the chemical freezeout is tremendous which would be indeed the case for the point-like hadrons. However, a self-consistent treatment of the van der Waals excluded volume reveals much smaller energy densities which are very far below a lowest limit estimate of the quark-gluon plasma energy density. PACS number(s): 25.75.-q, 24.10.Pa

- Equilibrium and nonequilibrium effects in nucleus nucleus collisions (1999)
- Abstract: Local thermal and chemical equilibration is studied for central AqA collisions at 10.7 160 AGeV in the Ultrarelativis- . tic Quantum Molecular Dynamics model UrQMD . The UrQMD model exhibits strong deviations from local equilibrium at the high density hadron string phase formed during the early stage of the collision. Equilibration of the hadron resonance matter is established in the central cell of volume Vs125 fm3 at later stages, tG10 fmrc, of the resulting quasi-isentropic expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. PACS: 25.75.-q; 24.10.Lx; 24.10.Pa; 64.30.qt

- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k

- Second cluster integral and excluded volume effects for the pion gas (2000)
- The quantum mechanical formula for Mayer s second cluster integral for the gas of relativistic particles with hard-core interaction is derived. The proper pion volume calculated with quantum mechanical formula is found to be an order of magnitude larger than its classical evaluation. The second cluster integral for the pion gas is calculated in quantum mechanical approach with account for both attractive and hard-core repulsive interactions. It is shown that, in the second cluster approximation, the repulsive -interactions as well as the finite width of resonances give important but almost canceling contributions. In contrast, an appreciable deviation from the ideal gas of pions and pion resonances is observed beyond the second clus- ter approximation in the framework of the Van der Waals excluded-volume model.

- Van der Waals excluded volume model for Lorentz contracted rigid spheres (2000)
- Conventional cluster and virial expansions are generalized to momentum dependent interparticle potentials. The model with Lorentz contracted hard core potentials is considered, e.g. as hadron gas model. A Van der Waals-type model with a temperature dependent excluded volume is derived. Lorentz contraction effects at given temperature are stronger for light particles and make their effective excluded volume smaller than that of heavy ones.

- Statistical coalescence model with exact charm conservation (2001)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.

- Open charm enhancement in Pb + Pb collisions at SPS (2000)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield. We find a strong enhancement of the open charm production, by a factor of about 2 4, over the standard hard-collision model extrapolation from nucleon-nucleon to nucleus-nucleus collisions. A possible mechanism of the open charm enhancement in A+A collisions at the SPS energies is proposed.