### Refine

#### Year of publication

#### Document Type

- Article (21)
- Report (7)
- Part of a Book (5)
- Preprint (2)
- Working Paper (2)
- Conference Proceeding (1)

#### Keywords

#### Institute

- Informatik (38)
- Medizin (2)
- E-Finance Lab e.V. (1)

- A neuro-fuzzy approach as medical diagnostic interface (2000)
- In contrast to the symbolic approach, neural networks seldom are designed to explain what they have learned. This is a major obstacle for its use in everyday life. With the appearance of neuro-fuzzy systems which use vague, human-like categories the situation has changed. Based on the well-known mechanisms of learning for RBF networks, a special neuro-fuzzy interface is proposed in this paper. It is especially useful in medical applications, using the notation and habits of physicians and other medically trained people. As an example, a liver disease diagnosis system is presented.

- A spectral multi-resolution image encoding network (1995)
- After a short introduction into traditional image transform coding, multirate systems and multiscale signal coding the paper focuses on the subject of image encoding by a neural network. Taking also noise into account a network model is proposed which not only learns the optimal localized basis functions for the transform but also learns to implement a whitening filter by multi-resolution encoding. A simulation showing the multi-resolution capabilitys concludes the contribution.

- A VLSI-design of the minimum entropy neuron (1994)
- One of the most interesting domains of feedforward networks is the processing of sensor signals. There do exist some networks which extract most of the information by implementing the maximum entropy principle for Gaussian sources. This is done by transforming input patterns to the base of eigenvectors of the input autocorrelation matrix with the biggest eigenvalues. The basic building block of these networks is the linear neuron, learning with the Oja learning rule. Nevertheless, some researchers in pattern recognition theory claim that for pattern recognition and classification clustering transformations are needed which reduce the intra-class entropy. This leads to stable, reliable features and is implemented for Gaussian sources by a linear transformation using the eigenvectors with the smallest eigenvalues. In another paper (Brause 1992) it is shown that the basic building block for such a transformation can be implemented by a linear neuron using an Anti-Hebb rule and restricted weights. This paper shows the analog VLSI design for such a building block, using standard modules of multiplication and addition. The most tedious problem in this VLSI-application is the design of an analog vector normalization circuitry. It can be shown that the standard approaches of weight summation will not give the convergence to the eigenvectors for a proper feature transformation. To avoid this problem, our design differs significantly from the standard approaches by computing the real Euclidean norm. Keywords: minimum entropy, principal component analysis, VLSI, neural networks, surface approximation, cluster transformation, weight normalization circuit.

- About adaptive state knowledge extraction for septic shock mortality prediction (2002)
- The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This contribution models medical symptoms as observations cased by transitions between hidden markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?

- Adaptive content mapping for internet navigation (2003)
- The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database.

- Adaptive modeling of biochemical pathways (2004)
- In bioinformatics, biochemical pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically learning the parameters is necessary. In this paper, for the small, important example of inflammation modeling a network is constructed and different learning algorithms are proposed. It turned out that due to the nonlinear dynamics evolutionary approaches are necessary to fit the parameters for sparse, given data. Keywords: model parameter adaption, septic shock. coupled differential equations, genetic algorithm.

- Adaptive modeling of biochemical pathways (2003)
- In bioinformatics, biochemical pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically learning the parameters is necessary. In this paper, for the small, important example of inflammation modeling a network is constructed and different learning algorithms are proposed. It turned out that due to the nonlinear dynamics evolutionary approaches are necessary to fit the parameters for sparse, given data. Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003

- Adaptive process control in rubber industry (1998)
- This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good results even using only a few training samples.

- Approximator networks and the principle of optimal information distribution (1991)
- It is well known that artificial neural nets can be used as approximators of any continous functions to any desired degree. Nevertheless, for a given application and a given network architecture the non-trivial task rests to determine the necessary number of neurons and the necessary accuracy (number of bits) per weight for a satisfactory operation. In this paper the problem is treated by an information theoretic approach. The values for the weights and thresholds in the approximator network are determined analytically. Furthermore, the accuracy of the weights and the number of neurons are seen as general system parameters which determine the the maximal output information (i.e. the approximation error) by the absolute amount and the relative distribution of information contained in the network. A new principle of optimal information distribution is proposed and the conditions for the optimal system parameters are derived. For the simple, instructive example of a linear approximation of a non-linear, quadratic function, the principle of optimal information distribution gives the the optimal system parameters, i.e. the number of neurons and the different resolutions of the variables.

- Credit card fraud detection by adaptive neural data mining (1999)
- The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: Since only one financial transaction of a thousand is invalid no prediction success less than 99.9% is acceptable. Due to these credit card transaction proportions complete new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.