### Refine

#### Year of publication

#### Document Type

- Article (21)
- Working Paper (6)
- Part of a Book (5)
- Report (3)
- Preprint (2)
- Conference Proceeding (1)

#### Keywords

- Neural Networks (2)
- Statistical Classification (2)
- septic shock (2)
- Adaptive Prediction (1)
- Adaptive process control (1)
- Automatic Prediction (1)
- Bildverarbeitung (1)
- Cellular neural network (1)
- Euler method (1)
- Hauptkomponentenanalyse (1)

#### Institute

- Informatik (38)
- Medizin (2)
- E-Finance Lab e.V. (1)

- The principal independent components of images (1998)
- This paper proposes a new approach for the encoding of images by only a few important components. Classically, this is done by the Principal Component Analysis (PCA). Recently, the Independent Component Analysis (ICA) has found strong interest in the neural network community. Applied to images, we aim for the most important source patterns with the highest occurrence probability or highest information called principal independent components (PIC). For the example of a synthetic image composed by characters this idea selects the salient ones. For natural images it does not lead to an acceptable reproduction error since no a-priori probabilities can be computed. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that this definition of PIC implements the classical demand of Shannon’s rate distortion theory.

- Image encoding by independent principal components (1998)
- The encoding of images by semantic entities is still an unresolved task. This paper proposes the encoding of images by only a few important components or image primitives. Classically, this can be done by the Principal Component Analysis (PCA). Recently, the Independent Component Analysis (ICA) has found strong interest in the signal processing and neural network community. Using this as pattern primitives we aim for source patterns with the highest occurrence probability or highest information. For the example of a synthetic image composed by characters this idea selects the salient ones. For natural images it does not lead to an acceptable reproduction error since no a-priori probabilities can be computed. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that the Independent Principal Components (IPC) in contrast to the Principal Independent Components (PIC) implement the classical demand of Shannon’s rate distortion theory.

- Revolutionieren Neuronale Netze unsere Vorhersagefähigkeiten? (1999)
- Diese Arbeit plädiert für eine rationale Behandlung von Patientendaten und untersucht dazu die Analyse der Daten mit Hilfe neuronale Netze etwas näher. Erfolgreiche Beispielanwendungen zeigen, daß die menschlichen Diagnosefähigkeiten deutlich schlechter sind als neuronale Diagnosesysteme. Für das Beispiel der neueren Architektur mit RBF-Netzen wird die Funktionalität näher erläutert und gezeigt, wie menschliche und neuronale Expertise miteinander gekoppelt werden kann. Der Ausblick deutet Anwendungen und Praxisproblematik derartiger Systeme an.

- Using growing RBF-nets in rubber industry process control (1999)
- This paper describes the use of a Radial Basis Function (RBF) neural network in the approximation of process parameters for the extrusion of a rubber profile in tyre production. After introducing the rubber industry problem, the RBF network model and the RBF net learning algorithm are developed, which uses a growing number of RBF units to compensate the approximation error up to the desired error limit. Its performance is shown for simple analytic examples. Then the paper describes the modelling of the industrial problem. Simulations show good results, even when using only a few training samples. The paper is concluded by a discussion of possible systematic error influences, improvements and potential generalisation benefits. Keywords: Adaptive process control; Parameter estimation; RBF-nets; Rubber extrusion

- Neural data mining for credit card fraud detection (1999)
- The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: Since only one financial transaction of a thousand is invalid no prediction success less than 99.9% is acceptable. Due to these credit card transaction proportions complete new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.

- A neuro-fuzzy approach as medical diagnostic interface (2000)
- In contrast to the symbolic approach, neural networks seldom are designed to explain what they have learned. This is a major obstacle for its use in everyday life. With the appearance of neuro-fuzzy systems which use vague, human-like categories the situation has changed. Based on the well-known mechanisms of learning for RBF networks, a special neuro-fuzzy interface is proposed in this paper. It is especially useful in medical applications, using the notation and habits of physicians and other medically trained people. As an example, a liver disease diagnosis system is presented.

- Medical analysis and diagnosis by neural networks (2001)
- In its first part, this contribution reviews shortly the application of neural network methods to medical problems and characterizes its advantages and problems in the context of the medical background. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic systems. Then, paradigm of neural networks is shortly introduced and the main problems of medical data base and the basic approaches for training and testing a network by medical data are described. Additionally, the problem of interfacing the network and its result is given and the neuro-fuzzy approach is presented. Finally, as case study of neural rule based diagnosis septic shock diagnosis is described, on one hand by a growing neural network and on the other hand by a rule based system. Keywords: Statistical Classification, Adaptive Prediction, Neural Networks, Neurofuzzy, Medical Systems

- Adaptive modeling of biochemical pathways (2004)
- In bioinformatics, biochemical pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically learning the parameters is necessary. In this paper, for the small, important example of inflammation modeling a network is constructed and different learning algorithms are proposed. It turned out that due to the nonlinear dynamics evolutionary approaches are necessary to fit the parameters for sparse, given data. Keywords: model parameter adaption, septic shock. coupled differential equations, genetic algorithm.

- Septic shock diagnosis by neural networks and rule based systems (2002)
- In intensive care units physicians are aware of a high lethality rate of septic shock patients. In this contribution we present typical problems and results of a retrospective, data driven analysis based on two neural network methods applied on the data of two clinical studies. Our approach includes necessary steps of data mining, i.e. building up a data base, cleaning and preprocessing the data and finally choosing an adequate analysis for the medical patient data. We chose two architectures based on supervised neural networks. The patient data is classified into two classes (survived and deceased) by a diagnosis based either on the black-box approach of a growing RBF network and otherwise on a second network which can be used to explain its diagnosis by human-understandable diagnostic rules. The advantages and drawbacks of these classification methods for an early warning system are discussed.

- About adaptive state knowledge extraction for septic shock mortality prediction (2002)
- The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This contribution models medical symptoms as observations cased by transitions between hidden markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?