### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (9)
- heavy ion collisions (7)
- Kollisionen schwerer Ionen (6)
- UrQMD (6)
- heavy ion collisions (6)
- Quark Gluon Plasma (4)
- Quark-Gluon-Plasma (4)
- Drell-Yan (3)
- QGP (3)
- Molekulare Dynamik (2)

#### Institute

- Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions (1997)
- Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.

- Microscopic models for ultrarelativistic heavy ion collisions (1998)
- In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.

- The disappearance of flow (1995)
- We investigate the disappearance of collective flow in the reaction plane in heavy-ion collisions within a microscopic model (QMD). A systematic study of the impact parameter dependence is performed for the system Ca+Ca. The balance energy strongly increases with impact parameter. Momentum dependent interactions reduce the balance energies for intermediate impact parameters b ~ 4.5 fm. Dynamical negative flow is not visible in the laboratory frame but does exist in the contact frame for the heavy system Au+Au. For semi-peripheral collisions of Ca+Ca with b ~ 6.5 fm a new two-component flow is discussed. Azimuthal distributions exhibit strong collectiv flow signals, even at the balance energy.

- (Strange) meson interferometry at RHIC (2002)
- We make predictions for the kaon interferometry measurements in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). A first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons is assumed for the transport calculations. The fraction of kaons that are directly emitted from the phase boundary is considerably enhanced at large transverse momenta K T ~ 1 GeV/c. In this kinematic region, the sensitivity of the R out/R side ratio to the QGP-properties is enlarged. Here, the results of the 1-dimensional correlation analysis are presented. The extracted interferometry radii, depending on K-Theta, are not unusually large and are strongly affected by momentum resolution effects.

- Kaon interferometry : a sensitive probe of the QCD equation of state? (2002)
- We calculate the kaon HBT radius parameters for high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma to a gas of hadrons. At high transverse momenta K_T ~ 1 GeV/c direct emission from the phase boundary becomes important, the emission duration signal, i.e., the R_out/R_side ratio, and its sensitivity to T_c (and thus to the latent heat of the phase transition) are enlarged. Moreover, the QGP+hadronic rescattering transport model calculations do not yield unusual large radii (R_i<9fm). Finite momentum resolution effects have a strong impact on the extracted HBT parameters (R_i and lambda) as well as on the ratio R_out/R_side.

- Particle correlations at RHIC - scrutiny of a puzzle (2002)
- We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas. We compare the obtained correlation radii with recent data from RHIC. The predicted R_side radii agree with data while the R_out and R_long radii are overestimated. We also address the impact of in-medium modifications, for example, a broadening of the rho-meson, on the correlation radii. In particular, the longitudinal correlation radius R_long is reduced, improving the comparison to data.

- Local equilibrium in heavy-ion collisions: microscopic analysis of a central cell versus infinite matter (2000)
- REVTEX, 27 pages incl. 10 figures and 3 tables; Phys. Rev. C (in press) Journal-ref: Phys.Rev. C62 (2000) 064906. We study the local equilibrium in the central V = 125 fm3 cell in heavy-ion collisions at energies from 10.7 A GeV (AGS) to 160 A GeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in the cell are compared with those of infinite nuclear matter, as calculated within the same model. The agreement between the spectra in the two systems is established for times t >= 10 fm/c in the central cell. The cell results do not deviate noticeably from the infinite matter calculations with rising incident energy, in contrast to the apparent discrepancy with predictions of the statistical model (SM) of an ideal hadron gas. The entropy of this state is found to be very close to the maximum entropy, while hadron abundances and energy spectra differ significantly from those of the SM.

- Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions (2004)
- We investigate hadron production as well as transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data on transverse mass spectra from pp, pA and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~5 A·GeV, furthermore, the measured K± transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. We investigate various scenarios to explore their potential effects on the K± spectra. In particular the initial state Cronin effect is found to play a substantial role at top SPS and RHIC energies. However, the maximum in the K+/..+ ratio at 20 to 30 A·GeV is missed by 40% and the approximately constant slope of the K± spectra at SPS energies is not reproduced either. Our systematic analysis suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential µq and temperature T- should be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.

- Global observables and secondary interactions in central Au+Au reactions at sqrt[s]=200A GeV (2000)
- The ultrarelativistic quantum molecular dynamics model (UrQMD) is used to study global observables in central reactions of Au+Au at sqrt[s]=200A GeV at the Relativistic Heavy Ion Collider (RHIC). Strong stopping governed by massive particle production is predicted if secondary interactions are taken into account. The underlying string dynamics and the early hadronic decoupling implies only small transverse expansion rates. However, rescattering with mesons is found to act as a source of pressure leading to additional flow of baryons and kaons, while cooling down pions.