### Refine

#### Year of publication

#### Keywords

#### Institute

- "Pressure equilibration" in ultrarelativistic heavy ion collisions (1997)
- We study the time scale for pressure equilibration in heavy ion collisions at AGS energies within the three-fluid hydrodynamical model and a microscopic cascade model (UrQMD). We find that kinetic equilibrium is reached in both models after a time of 5 fm/c (center-of-mass time). Thus, observables which are sensitive to the early stage of the reaction differ considerably from the expectations within the instant thermalization scenario (one-fluid hydrodynamical model).

- "Soft'' transverse expansion and flow in a multi-fluid model without phase transition (1997)
- Abstract: We study transverse expansion and directed flow in Au(11AGeV)Au reactions within a multi-fluid dynamical model. Although we do not employ an equation of state (EoS) with a first order phase transition, we find a slow increase of the transverse velocities of the nucleons with time. A similar behaviour can be observed for the directed nucleon flow. This is due to non-equilibrium e ects which also lead to less and slower conversion of longitudinal into transverse momentum. We also show that the proton rapidity distribution at CERN energies, as calculated within this model, agrees well with the preliminary NA44-data.

- Antiflow of nucleons at the softest point of the EoS (1999)
- Report-no: UFTP-492/1999 Journal-ref: Phys.Rev. C61 (2000) 024909 We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state.

- Bose stimulated pion production in relativistic nuclear collisions (1995)
- We demonstrate the importance of the Bose-statistical effects for pion production in relativistic heavy-ion collisions. The evolution of the pion phase-space density in central collisions of ultrarelativistic nuclei is studied in a simple kinetic model taking into account the effect of Bose-simulated pion production by the NN collisions in a dense cloud of mesons.

- Collective effects on mass asymmetry in fission (1976)
- the development of the mass asymmetry vibrations in the final stages of the fission process is studied with an approximate treatment of the coupling to relative motion. A parametrized friction is introduced and its effects are studied. Numerical results are presented for 236U, together with estimates for the kinetic energy of the fragments. RADIOACTIVITY, FISSION 236U; calculated mass distribution, kinetic energy distribution. Collective dynamics, shell correction method, cranking model.

- Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions (1980)
- Angular and energy distributions of fragments emitted from fast nucleus-nucleus collisions (Ne--> U at 250, 400, and 800 MeV/N) are calculated with use of nuclear fluid dynamics. A characteristic dependence of the energy spectra and angular distributions on the impact parameter is predicted. The preferential sideward emission of reaction fragments observed in the calculation for nearly central collisions seems to be supported by recent experimental data.

- Critical review of quark gluon plasma signatures (1999)
- Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.

- Different deformations of proton and neutron distributions in nuclei (1981)
- Different collective deformation coordinates for neutrons and protons are introduced to allow for both stretching and γ transitions consistent with experiments. The rotational actinide nuclei 234-238U and 232Th are successfully analyzed in this model. NUCLEAR STRUCTURE 232Th, 234-238U calculated B (E2) values, collective model.

- Enhanced binding and cold compression of nuclei due to admixture of antibaryons (2002)
- We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean field model assuming that the nucleon and antinucleon potentials are related by the G parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.

- Entropy production in collisions of relativistic heavy ions : a signal for quark-gluon plasma phase transition? (1998)
- Entropy production in the compression stage of heavy ion collisions is discussed within three distinct macroscopic models (i.e. generalized RHTA, geometrical overlap model and three-fluid hydrodynamics). We find that within these models \sim 80% or more of the experimentally observed final-state entropy is created in the early stage. It is thus likely followed by a nearly isentropic expansion. We employ an equation of state with a first-order phase transition. For low net baryon density, the entropy density exhibits a jump at the phase boundary. However, the excitation function of the specific entropy per net baryon, S/A, does not reflect this jump. This is due to the fact that for final states (of the compression) in the mixed phase, the baryon density \rho_B increases with \sqrt{s}, but not the temperature T. Calculations within the three-fluid model show that a large fraction of the entropy is produced by nuclear shockwaves in the projectile and target. With increasing beam energy, this fraction of S/A decreases. At \sqrt{s}=20 AGeV it is on the order of the entropy of the newly produced particles around midrapidity. Hadron ratios are calculated for the entropy values produced initially at beam energies from 2 to 200 AGeV.