### Refine

#### Year of publication

#### Document Type

- Article (183) (remove)

#### Keywords

- heavy ion collisions (8)
- Kollisionen schwerer Ionen (6)
- Kollisionen schwerer Ionen (6)
- nuclear reactions (4)
- Quark-Gluon-Plasma (3)
- heavy ion collisions (3)
- Drell-Yan (2)
- EOS (2)
- Hadron (2)
- Pion (2)

- Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate-energy heavy ion collisions (1991)
- We study the transition from fusion-fission phenomena at about 20 MeV/nucleon multifragmentation at 100–200 MeV/nucleon in the reaction 16O+80Br employing the quantum molecular dynamics model. The time evolution of the density and mass distribution, the charged-particle multiplicity, and spectra as well as angular distributions of light particles are investigated. The results exhibit the transition of the disassembly mechanism, but no sharp change is found. The results are in good agreement with recently measured 4-Pi data.

- Baryon resonances: A Primary rho ---> lepton+ lepton- source in p + p and p + d at 4.9-GeV. (1994)
- Dilepton spectra for p+p and p+d reactions at 4.9GeV are calculated. We consider electromagnetic bremsstrahlung also in inelastic reactions. N* and Delta* decay present the major contributions to the pho and omega meson yields.Pion annihilation yields only 1.5% of all pho's in p+d. The pho mass spectrum is strongly distorted due to phase space effects, populating dominantly dilepton masses below 770MeV.

- Relativistic two-center continuum (1987)
- A method is presented to define unique continuum states for the two-center Dirac Hamiltonian. In the spherical limit these states become the familiar angular-momentum eigenstates of the radial Coulomb potential. The different states for a fixed total energy ‖E‖>m may be distinguished by considering the asymptotic spin-angular distribution of states with unique scattering phases. The first numerical solutions of the two-center Dirac equation for continuum states are presented.

- Phase structure of excited baryonic matter in the relativistic mean field theory (1987)
- We analyze the phase structure of the nonlinear mean-field meson theory of baryonic matter (nucleons plus delta resonances). Depending on the choice of the coupling constants, we find three physically distinct phase transitions in this theory: a nucleonic liquid-gas transition in the low temperature, Tc<20 MeV, low density, ρ≃0.5ρ0, regime, a high-temperature (T≃150 MeV) finite density transition from a gas of massive hadrons to a nearly massless baryon, antibaryon plasma, and, third, a strong phase transition from the nucleonic fluid to a resonance-dominated ‘‘delta-matter’’ isomer at ρ>2ρ0 and Tc<50 MeV. All three phase transitions are of first order. It is shown that the occurrence of these different phase transitions depends critically on the coupling constants. Since the production of pions also depends strongly on the coupling constants, it is seen that the equation of state cannot be derived unambiguously from pion data.

- Nuclear equation of state from the nonlinear relativistic mean field theory (1988)
- The properties of symmetric nuclear matter are investigated in the nonlinear relativistic mean field theory of nuclear matter. We consider the constraints imposed by four nuclear ground state properties on the coupling constants and on the equation of state at zero and at finite temperature. We find that the compression constant K(ρ0) as well as the temperature is irrelevant for the stiffness of the equation of state for m*(ρ0)≤0.7. The main point is that the relativistic mean field theory exhibits acausal and unphysical behavior for compressibilities below K(ρ0)=200 MeV. Every set of coupling constants with a negative quartic coupling constant c is unstable against small quantum fluctuations.

- Continuum nuclear structure of O16 in the Eigenchannel reaction theory (1967)
- The total particle-particle SJ matrix of O16 for spin J=1- and excitation energies between 15 and 27 MeV has been calculated in the eigenchannel reaction theory for several parameters of the Saxon-Woods potential and the two-body force. The many-body problem has been treated in the 1-particle-1-hole approximation. The photon channels have been included by perturbation theory. Surprisingly, the most important structure of the experimental cross sections is reproduced quite well in this simple approximation.

- Angular distributions for the inverse photonuclear process in Si28 in the eigenchannel reaction theory (1967)
- Using the eigenchannel reaction theory we performed coupled-channel calculations for Si28 and computed the differential cross section for Al27(p, γ0)Si28 over the energy range 6 MeV<Ep <16 MeV. The obtained angular distributions are nearly constant over the whole energy range and agree with the experiment in that they are almost isotropic. Thus, it seems that in this framework we can give a natural explanation for the peculiar behavior of the Al27(p, γ0)Si28 cross section.

- 3- Continuum States of O16 in the Eigenchannel Reaction Theory (1966)
- The complete 3- part of the S matrix for O16 has been computed in the one-particle, one-hole approximation. In the continuum states the isospin invariance is totally broken; analogous partial cross sections for protons and neutrons show large differences.

- Dissolution of nucleons in giant nuclei (1986)
- We discuss the possibility that nuclei with very large baryon numbers can exist in the form of large quark blobs in their ground states. A calculation based on the picture of quark bags shows that, in principle, the appearance of such exotic nuclear states in present laboratory experiments cannot be excluded. Some speculations in connection with the recently observed anomalous positron production in heavy-ion experiments are presented.

- Nuclear giant quadrupole resonances in spherical even-even nuclei (1970)
- The dynamic collective model has been extended to quadrupole giant resonances in spherical nuclei. The splitting of giant dipole and giant quadrupole resonances due to their coupling to surface vibrations has been calculated for Sn isotopes. Agreement with recent γ-absorption measurements of the Livermore group has been found.