### Refine

#### Year of publication

#### Document Type

- Article (183) (remove)

#### Keywords

- heavy ion collisions (8)
- Kollisionen schwerer Ionen (6)
- Kollisionen schwerer Ionen (6)
- nuclear reactions (4)
- Quark-Gluon-Plasma (3)
- heavy ion collisions (3)
- Drell-Yan (2)
- EOS (2)
- Hadron (2)
- Pion (2)

- "Antiflow" of antiprotons in heavy ion collisions (1994)
- In the framework of the relativistic quantum dynamics approach we investigate antiproton observables in Au-Au collisions at 10.7A GeV. The rapidity dependence of the in-plane directed transverse momentum p(y) of p's shows the opposite sigh of the nucleon flow, which has indeed recently been discovered at 10.7A GeV by the E877 group. The "antiflow" of p's is also predicted at 2A GeV and at 160 A GeV and appears at all energies also for pi's and K's. These predicted p anticorrelations are a direct proof of strong p annihilation in massive heavy ion reactions.

- 12C emission from 114Ba and nuclear properties (1995)
- We investigate the influence of nuclear masses, radii, and interaction potentials on 12C radioactivity of 114the best representative of a new island of cluster emitters leading to daughter nuclei around the doubly magic 100Sn. Three different models are considered: one derived by Blendowske, Fliessbach, and Walliser (BFW) from the many-body theory of alpha decay, as well as our analytical (ASAF) and numerical (NuSAF) superasymmetric fission models. A Q value larger by 1 MeV or an ASAF potential barrier reduced by 3% are producing a half-life shorter by 2 orders of magnitude. A similar effect can be obtained within BFW and NuSAF by a decrease of the action integral with less than 10% and 5%, respectively. By increasing the radius constant within ASAF or BFW models by 10%, the half-life becomes shorter by 3 orders of magnitude.

- 3- Continuum States of O16 in the Eigenchannel Reaction Theory (1966)
- The complete 3- part of the S matrix for O16 has been computed in the one-particle, one-hole approximation. In the continuum states the isospin invariance is totally broken; analogous partial cross sections for protons and neutrons show large differences.

- A self-consistent equation of state for nuclear matter (1993)
- The authors formulate a phenomenological extension of the mean-field theory approach and define a class of thermodynamically self-consistent equations of state for nuclear matter. A new equation of state of this class is suggested and examined in detail.

- Angular correlation of electrons and positrons in internal pair conversion (1990)
- The angular distribution of electrons and positrons emitted in internal pair conversion is calculated. Coulomb-distorted waves are used as electron wave functions. Nuclear transitions of various multipolarities L>0 and of magnetic (ML) and of electric (EL) type are considered as well as E0 conversion. Analytical expressions for the angular correlation are derived, which are evaluated numerically assuming a finite extension of the nucleus and, for the EL and ML conversion, also in the point-nucleus approximation. The calculated angular correlations are compared with results obtained within the Born approximation and, for the E0 case, with experimental data.

- Angular Correlations of Coincident Electron-Positron Pairs Produced in Heavy-Ion Collisions with Nuclear Time Delay (1988)
- We calculate angular correlations between coincident electron-positron pairs emitted in heavy-ion collisions with nuclear time delay. Special attention is directed to a comparison of supercritical and subcritical systems, where angular correlations of pairs produced in collisions of bare U nuclei are found to alter their sign for nuclear delay times of the order of 2 × 10-21 s. This effect is shown to occur exclusively in supercritical systems, where spontaneous positron creation is active.

- Angular distributions for the inverse photonuclear process in Si28 in the eigenchannel reaction theory (1967)
- Using the eigenchannel reaction theory we performed coupled-channel calculations for Si28 and computed the differential cross section for Al27(p, γ0)Si28 over the energy range 6 MeV<Ep <16 MeV. The obtained angular distributions are nearly constant over the whole energy range and agree with the experiment in that they are almost isotropic. Thus, it seems that in this framework we can give a natural explanation for the peculiar behavior of the Al27(p, γ0)Si28 cross section.

- Anti-proton production and annihilation in nuclear collisions at 15-A/GeV (1992)
- We present a calculation of antiproton yields in Si+Al and Si+Au collisions at 14.5A GeV in the framework of the relativistic quantum molecular dynamics approach (RQMD). Multistep processes lead to the formation of high-mass flux tubes. Their decay dominates the initial antibaryon yield. However, the subsequent annihilation in the surrounding baryon-rich matter suppresses the antiproton yield considerably: Two-thirds of all antibaryons are annihilated even for the light Si+Al system. Comparisons with preliminary data of the E802 experiment support this analysis.

- Asymptotically correct shell model for nuclear fission (1970)
- A two-center shell model with oscillator potentials, l→·s→ forces, and l→2 terms is developed. The shell structures of the original spherical nucleus and those of the final fragments are reproduced. For small separation of the two centers the level structure resembles the Nilsson scheme. This two-center shell model might be of importance in problems of nuclear fission.

- Atomic nuclei decay modes by spontaneous emission of heavy ions (1985)
- The great majority of the known nuclides with Z>40, including the so-called stable nuclides, are metastable with respect to several modes of spontaneous superasymmetric splitting. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relative to the alpha decay for these natural radioactivities. From a huge amount of systematic calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained from parent-emitted heavy ion combinations leading to a magic (208Pb) or almost magic daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-lives in the range of 1010–1030 s: 5He, 8–10Be, 11,12B, 12–16C, 13–17N, 15–22O, 18–23F, 20–26Ne, 23–28Na, 23–30Mg, 27–32Al, 28–36Si, 31–39P, 32–42S, 35–45Cl, 37–47Ar, 40–49 K, 42-51. . .Ca, 44–53 Sc, 46–53Ti, 48–54V, and 49–55 Cr. The shell structure and the pairing effects are clearly manifested in these new decay modes.