### Refine

#### Year of publication

#### Document Type

- Article (183) (remove)

#### Keywords

- heavy ion collisions (8)
- Kollisionen schwerer Ionen (6)
- Kollisionen schwerer Ionen (6)
- nuclear reactions (4)
- Quark-Gluon-Plasma (3)
- heavy ion collisions (3)
- Drell-Yan (2)
- EOS (2)
- Hadron (2)
- Pion (2)

- Viscous fluid dynamical calculation of the reaction 12C(85 MeV/nucleon) + 197Au (1983)
- Proton spectra have been calculated for the reaction 12C(85 MeV/nucleon) + 197Au using a three-dimensional hydrodynamical model with viscosity and thermal conductivity and final thermal breakup. The theoretical results are compared to recent data. It is shown that the predicted flow effects are not observable as a result of the impact parameter averaging inherent in the inclusive proton spectra. In contrast, angular distributions of medium mass nuclei (A>3) in nearly central collisions can provide signatures for flow effects.

- Viscosity and the equation of state in high energy heavy-ion reactions (1993)
- Viscous hydrodynamic calculations of high energy heavy-ion collisions (Nb-Nb and Au-Au) from 200 to 800 MeV/nucleon are presented. The resulting baryon rapidity distributions, the in-plane transverse momentum transfer (bounce-off), and the azimuthal dependence of the midrapidity particles (off-plane squeeze out) compare well with Plastic Ball data. We find that the considered observables are sensitive both to the nuclear equation of state and to the nuclear shear viscosity η. Transverse momentum distributions indicate a high shear viscosity (η≊60 MeV/fm2 c) in the compression zone, in agreement with nuclear matter estimates. The bulk viscosity ζ influences only the entropy production during the expansion stage; collective observables like flow and dN/dY do not depend strongly on ζ. The recently observed off-plane (φ=90°) squeeze-out, which is found in the triple-differential rapidity distribution, exhibits the strongest sensitivity to the nuclear equation of state. It is demonstrated that for very central collisions, b=1 fm, the squeeze-out is visible even in the double-differential cross section. This is experimentally accessible by studying azimuthally symmetric events, as confirmed recently by data of the European 4π detector collaboration at Gesellchaft für Schwerionforschung Darmstadt.

- Variable masses in fission and heavy-ion collisions (1972)
- With the use of the cranking formula, the coordinate-dependent mass parameters of the kinetic-energy operator in fission processes and heavy-ion collisions are calculated in the two-center oscillator model. It is shown that the reduced mass and also the classical moment of inertia are obtained for large separations of the fragments. For small separations, however, the mass parameter for the motion of the centers of mass of the fragments is larger than the reduced mass by an order of magnitude.

- Vacuum-polarization contribution to the hyperfine-structure splitting of hydrogenlike atoms (1994)
- A calculation of the vacuum-polarization contribution to the hyperfine splitting for hydrogenlike atoms is presented. The extended nuclear charge distribution is taken into account. For the experimentally interesting case 209Bi82+ we predict a delta-lambda- -1.6 nm shift for the transition wavelength of the ground-state hyperfine splitting.

- Two-dimensional nuclear inertia : analytical relationships (1995)
- The components of the nuclear inertia tensor, functions of the separation distance R and of the radius of the light fragment R2, BRR(R,R2), BRR2(R,R2), and BR2R2(R,R2) are calculated within the Werner-Wheeler approximation, by using the parametrization of two intersected symmetric or asymmetric spheres. Analytical relationships are derived. When projected to a path R2=R2(R), the reduced mass is obtained at the touching point. The two one-dimensional parametrizations with R2=const, and the volume V2=const previously studied, are found to be particular cases of the present more general approach. Illustrations for the cold fission, cluster radioactivity, and α decay of 252Cf are given.

- Transition to delta matter from hot, dense nuclear matter within a relativistic mean field formulation of the nonlinear sigma and omega model (1997)
- An investigation of the transition to delta matter is performed based on a relativistic mean field formulation of the nonlinear sigma and omega model. We demonstrate that in addition to the Delta-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m* and K, the Delta isomer exists at baryon density ~ 2–3 p0 if beta=1.31 is adopted. For universal coupling of the nucleon and Delta, the Delta density at baryon density ~ 2–3 p0 and temperature ~ 0.4–0.5 fm-1 is about normal nuclear matter density, which is in accord with a recent experimental finding.

- Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate-energy heavy ion collisions (1991)
- We study the transition from fusion-fission phenomena at about 20 MeV/nucleon multifragmentation at 100–200 MeV/nucleon in the reaction 16O+80Br employing the quantum molecular dynamics model. The time evolution of the density and mass distribution, the charged-particle multiplicity, and spectra as well as angular distributions of light particles are investigated. The results exhibit the transition of the disassembly mechanism, but no sharp change is found. The results are in good agreement with recently measured 4-Pi data.

- Time-dependent Hartree-Fock studies of superheavy molecules (1983)
- The time dependent Hartree-Fock approximation is used to study the dynamical formation of long-lived superheavy nuclear complexes. The effects of long-range Coulomb polarization are treated in terms of a classical quadrupole polarization model. Our calculations show the existence of "resonantlike" structures over a narrow range of bombarding energies near the Coulomb barrier. Calculations of 238U + 238U are presented and the consequences of these results for supercritical positron emission are discussed. NUCLEAR REACTIONS 238U + 238U collisions as a function of bombarding energy, in the time-dependent Hartree-Fock approximation. Superheavy molecules and strongly damped collisions.

- Time dependent dirac equation with relativistic mean field Dynamics applied to heavy ion scattering (1986)
- We treat the relativistic propagation of nucleons coupled to scalar- and vector-meson fields in a mean-field approximation. The time-dependent Dirac and mean-meson-field equations are solved numerically in three dimensions. Collisions of 16O(300, 600, and 1200 MeV/nucleon) + 16O are studied for various impact parameters. The results are compared to other recent theoretical approaches. The calculations predict spallation, large transverse-momentum transfer, and positive-angle sidewards flow, in qualitative agreement with the data in this energy regime.

- Three-component fluid dynamics for the description of energetic heavy-ion reactions (1982)
- The nucleons taking part in heavy ion reaction are considered as a three-component fluid. The first and second components correspond to the nucleons of the target and the projectile, while the thermalized nucleons produced in the course of the collision belong to the third component. Making use of the Boltzmann equation, hydrodynamical equations are derived. An equation of state for anisotropic nuclear matter obtained from a field theoretical model in mean field approximation is applied in a one dimensional version of the three-component fluid model. The speed of thermalization is analyzed and compared to the results of cascade and kinetic models. NUCLEAR REACTIONS Relativistic heavy-ion reactions, hydrodynamic description.