### Refine

#### Year of publication

#### Keywords

#### Institute

- Enhanced binding and cold compression of nuclei due to admixture of antibaryons (2002)
- We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean field model assuming that the nucleon and antinucleon potentials are related by the G parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.

- Physics opportunities at RHIC and LHC (1999)
- Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.

- Excitation function of entropy and pion production from AGS to SPS energies (1998)
- Entropy production in the initial compression stage of relativistic heavy-ion collisions from AGS to SPS energies is calculated within a three-fluid hydrodynamical model. The entropy per participating net baryon is found to increase smoothly and does not exhibit a jump or a plateau as in the 1-dimensional one-fluid shock model. Therefore, the excess of pions per participating net baryon in nucleus-nucleus collisions as compared to proton-proton reactions also increases smoothly with beam energy.

- Impact parameter dependencies in Pb(160 AGeV)+Pb reactions : hydrodynamical vs. cascade calculations (1999)
- We investigate the impact parameter dependence of the specific entropy S/A in relativistic heavy ion collisions. Especially the anti-Lambda/anti-proton ratio is found to be a useful tool to distinguish between chemical equilibrium assumptions assumed in hydrodynamics (here: the 3-fluid model) and the chemical non-equilibrium scenario like in microscopic models as the UrQMD model.

- Entropy production in collisions of relativistic heavy ions : a signal for quark-gluon plasma phase transition? (1998)
- Entropy production in the compression stage of heavy ion collisions is discussed within three distinct macroscopic models (i.e. generalized RHTA, geometrical overlap model and three-fluid hydrodynamics). We find that within these models \sim 80% or more of the experimentally observed final-state entropy is created in the early stage. It is thus likely followed by a nearly isentropic expansion. We employ an equation of state with a first-order phase transition. For low net baryon density, the entropy density exhibits a jump at the phase boundary. However, the excitation function of the specific entropy per net baryon, S/A, does not reflect this jump. This is due to the fact that for final states (of the compression) in the mixed phase, the baryon density \rho_B increases with \sqrt{s}, but not the temperature T. Calculations within the three-fluid model show that a large fraction of the entropy is produced by nuclear shockwaves in the projectile and target. With increasing beam energy, this fraction of S/A decreases. At \sqrt{s}=20 AGeV it is on the order of the entropy of the newly produced particles around midrapidity. Hadron ratios are calculated for the entropy values produced initially at beam energies from 2 to 200 AGeV.

- The Phase Transition to the Quark-Gluon Plasma and Its Effect on Hydrodynamic Flow (1995)
- It is shown that in ideal relativistic hydrodynamics a phase transition from hadron to quark and gluon degrees of freedom in the nuclear matter equation of state leads to a minimum in the excitation function of the transverse collective flow.

- "Pressure equilibration" in ultrarelativistic heavy ion collisions (1997)
- We study the time scale for pressure equilibration in heavy ion collisions at AGS energies within the three-fluid hydrodynamical model and a microscopic cascade model (UrQMD). We find that kinetic equilibrium is reached in both models after a time of 5 fm/c (center-of-mass time). Thus, observables which are sensitive to the early stage of the reaction differ considerably from the expectations within the instant thermalization scenario (one-fluid hydrodynamical model).

- Extracting the equation of state from a microscopic non-equilibrium model (1996)
- We study the thermodynamic properties of infinite nuclear matter with the Ultrarelativistic Quantum Molecular Dynamics (URQMD), a semiclassical transport model, running in a box with periodic boundary conditions. It appears that the energy density rises faster than T4 at high temperatures of T approx. 200 - 300 MeV. This indicates an increase in the number of degrees of freedom. Moreover, We have calculated direct photon production in Pb+Pb collisions at 160 GeV/u within this model. The direct photon slope from the microscopic calculation equals that from a hydrodynamical calculation without a phase transition in the equation of state of the photon source.

- Antiflow of nucleons at the softest point of the EoS (1999)
- Report-no: UFTP-492/1999 Journal-ref: Phys.Rev. C61 (2000) 024909 We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state.