### Refine

#### Year of publication

#### Keywords

- Ion-ion potentials and the compressibility of nuclear matter (1968)
- With a schematic model for the nuclear matter we give a unified treatment of the real and imaginary parts of the elastic O16-O16 scattering potential. The model connects the parameters of the potential with the density and binding properties of the O16-O16 system and reproduces the structure of the excitation function quite well. It is shown that the nuclear compressibility can be obtained from the scattering data, and in the case of the S32 compound system there results an effective compressibility (finite quenching of the nuclei) of about 200 MeV.

- Quasimolecular structure in elastic O16 + O16 scattering (1970)
- It is suggested that the experimentally observed intermediate structure in the cross section of elastic O16 + O16 scattering is due to quasibound molecular states of the ion-ion system while the gross structure originates from virtually bound molecular states.

- Nuclear shock waves in heavy-ion collisions (1974)
- It is shown that nuclear matter is compressed during the encounter of heavy ions. If the relative velocity of the nuclei is larger than the velocity of first sound in nuclear matter (compression sound for isospin T=0), nuclear shock waves occur. They lead to densities which are 3-5 times higher than the nuclear equilibrium density ρ0, depending on the energy of the nuclei. The implications of this phenomenon are discussed.

- Theory of charge dispersion in nuclear fission (1975)
- By introducing charge asymmetry as a new dynamical collective coordinate in the asymmetric two-center shell model, the nuclear charge dispersion in the fission of 236U is calculated without using any free parameter. The agreement between theory and experiment is quite good.

- Possibility of detecting density isomers in high-density nuclear mach shock waves (1976)
- Up to now no experimentally feasible method for detecting abnormal nuclear states has been known. We propose to observe them in high-energy heavy-ion collisions through the disappearance of, or irregularities in, high-density nuclear Mach shock phenomena.

- Quasimolecular states in the 12C-12C system (1977)
- Quasimolecular resonance structures in the 12C-12C system are studied in the framework of the coupled channel formalism in the energy range Ec.m.=5-14 MeV. The influence of the coupling of the first excited 2+ state in 12C on the resonance structures is investigated by choosing various types of coupling potentials. The intermediate structures in the reflection and transition coefficients and cross sections can be interpreted with the double resonance mechanism. NUCLEAR REACTIONS 12C(12C, 12C), quasimolecular states, coupling potentials, coupled channel calculations for σ(θ).

- Molecular particle-core model and its application to 13C-13C scattering (1978)
- On the basis of the two-center shell model a theory is developed for the excitation of loosely bound nucleons in heavy ion collisions. These nucleons move in the two-center shell model potential generated by all the nucleons and are described by molecular wave functions. The model is applied to calculate the cross sections for the elastic and inelastic 13C-13C scattering. The cross sections show intermediate structures caused by the excitation of quasibound resonances in the molecular nucleus-nucleus potential. NUCLEAR REACTIONS 13C(13C,13C) molecular wave functions, dynamical two-center shell model, quasimolecular resonances, radial and Coriolis coupling, coupled channel calculations for σ(θ).

- Theory of nucleon transfer in the dynamical two-center shell model (1979)
- The theory of nucleon transfer in heavy ion reactions is formulated on the basis of the molecular particlecore model for a system consisting of two cores and one extracore nucleon. The extracore nucleon is described by the molecular wave functions of the asymmetric two-center shell model. The cores, which are assumed to be collectively excitable, are treated with vibrator-rotator models. Potentials for shape polarization are contained in the asymmetric two-center shell model and the interaction between the cores. The excitation and transfer of the extracore nucleon is induced by the radial and rotational couplings. The coupled channel equations, which include the recoil effects in first approximation, are derived in a form suitable for numerical calculations of cross sections. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, two-center shell model, collective and single-particle excitation.

- Signatures of molecular single-particle states by level crossings in heavy ion collisions (1980)
- In heavy ion collisions, the molecular single-particle motion may cause specific structures in the energy dependence of the cross sections which arise by the promotion of nucleons at level crossings according to the Landau-Zener excitation mechanism. In order to examine this effect in asymmetric heavy ion collisions, we have calculated level diagrams of the two-center shell model for the target projectile combinations 13C + 16O and 12C + 17O and analyzed with respect to inelastic excitation and neutron transfer. We select certain reactions as possible candidates for showing enhanced cross sections for nucleon excitation and transfer due to real and avoided level crossings near the Fermi level.

- Molecular single-particle excitations in heavy-ion reactions involving deformed light nuclei (1982)
- Two-center level diagrams for the neutron orbitals in the scattering of 16O on 25Mg and of 17O on 24Mg are calculated by using a deformed potential for 24,25Mg. Possible consequences of the nuclear Landau-Zener mechanism, namely the promotion of nucleons at avoided level crossings, and of the rotational coupling between crossing molecular single-particle orbitals are studied for inelastic excitation and neutron transfer. The important excitation and transfer processes, which are enhanced by the promotion process and the rotational coupling, are presented. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, asymmetric two center shell model, single particle excitation, deformed nuclei.