## Universitätspublikationen

### Refine

#### Year of publication

- 2001 (13) (remove)

#### Keywords

- heavy ion collision (2)
- (QGP) (1)
- Gluon (1)
- Hypermaterie (1)
- J/psi Erhöhung (1)
- J/psi Unterdrückung (1)
- J/psi enhancement (1)
- J/psi suppression (1)
- Kerne (1)
- Kollision (1)

- Statistical coalescence model with exact charm conservation (2001)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.

- Hydrodynamic models for heavy ion collisions, and beyond (2001)
- A generic property of a first-order phase transition in equilibrium, and in the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the mixed phase . A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies < 40A GeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Experimental data could soon provide essential information on the dynamics of the phase transition.

- Strange quark stars within the Nambu-Jona-Lasinio model (2001)
- We investigate the properties of charge neutral equilibrium cold quark matter within the Nambu Jona-Lasinio model. The calculations are carried out for di erent ratios of coupling constants characterizing the vector and scalar 4 fermion interaction, xi = GV /GS. It is shown that for xi < 0.4 matter is self bound and for xi < 0.65 it has a first order phase transition of the liquid gas type. The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and electric charge. The characteristics of the quark stars are calculated for xi = 0, 0.5 and 1. It is found that the phase transition leads to a strong density variation at the surface of these stars. For xi = 1 the properties of quark stars show behaviors typical for neutron stars. At >< 0.4 the stars near to the maximum mass have a large admixture of strange quarks in their interiors. PACS number: 14.65.-q, 26.60.+c, 97.10.-q

- Open and hidden charm production in heavy ion collisions at ultrarelativistic energies (2001)
- We consider the production of the open charm and J/psi mesons in heavy ion collisions at BNL RHIC. We discuss several recently developed pictures for J/psi production and argue that a measurement at RHIC energies is crucial for disentangling these di erent descriptions.

- J / psi suppression and enhancement in Au + Au collisions at the BNL RHIC (2001)
- We consider the production of the J/psi mesons in heavy ion collisions at RHIC energies in the statistical coalescence model with an exact (canonical ensemble) charm conservation. The cc quark pairs are assumed to be created in the primary hard parton collisions, but the formation of the open and hidden charm particles takes place at the hadronization stage and follows the prescription of statistical mechanics. The dependence of the J/psi production on both the number of nucleon participants and the collision energy is studied. The model predicts the J/psi suppression for low energies, whereas at the highest RHIC energy the model reveals the J/psi enhancement.

- Properties of dense strange hadronic matter with quark degrees of freedom (2001)
- The properties of strange hadronic matter are studied in the context of the modified quark-meson coupling model using two substantially di erent sets of hyperon-hyperon (Y Y ) interactions. The first set is based on the Nijmegen hard core potential model D with slightly attractive Y Y interactions. The second potential set is based on the recent SU(3) extension of the Nijmegen soft-core potential NSC97 with strongly attractive Y Y interactions which may allow for deeply bound hypernuclear matter. The results show that, for the first potential set, the hyperon does not appear at all in the bulk at any baryon density and for all strangeness fractions. The binding energy curves of the resulting N system vary smoothly with density and the system is stable (or metastable if we include the weak force). However, the situation is drastically changed when using the second set where the hyperons appear in the system at large baryon densities above a critical strangeness fraction. We find strange hadronic matter undergoes a first order phase transition from a N system to a N for strangeness fractions fS > 1.2 and baryonic densities exceeding twice ordinary nuclear matter density. Furthermore, it is found that the system built of N is deeply bound. This phase transition a ects significantly the equation of state which becomes much softer and a substantial drop in energy density and pressure are detected as the phase transition takes place. PACS:21.65.+f, 24.85.+p, 12.39Ba

- Microscopic colored quark dynamics in the soft nonperturbative regime : description of hadron formation in relativistic S+Au collisions at CERN (2001)
- The quark-molecular-dynamics model is used to study microscopically the dynamics of the coloured quark phase and the subsequent hadron formation in relativistic S+Au collisions at the CERN-SPS. Particle spectra and hadron ratios are compared to both data and the results of hadronic transport calculations. The non-equilibrium dynamics of hadronization and the loss of correlation among quarks are studied.

- Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model (2001)
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.

- Kinetic equation for gluons at the early stage (2001)
- We derive the kinetic equation for pure gluon QCD plasma in a general way, applying the background field method. We show that the quantum kinetic equation contains a term as in the classical case, that describes a color charge precession of partons moving in the gauge field. We emphasize that this new term is necessary for the gauge covariance of the resulting equation.

- Partonic scattering cross sections in the QCD medium (2001)
- A medium modified gluon propagator is used to evaluate the scattering cross section for the process gg - gg in the QCD medium by performing an ex- plicit sum over the polarizations of the gluons. We incorporate a magnetic sreening mass from a non - perturbative study. It is shown that the medium modified cross section is finite, divergence free, and is independent of any ad-hoc momentum transfer cut-off parameters. The medium modified finite cross sections are necessary for a realistic investigation of the production and equilibration of the minijet plasma expected at RHIC and LHC PACS: 12.38.Mh; 14.70.Dj; 12.38.Bx; 11.10.Wx