## Universitätspublikationen

### Refine

#### Year of publication

#### Document Type

- Preprint (388) (remove)

#### Keywords

- Kollisionen schwerer Ionen (22)
- heavy ion collisions (14)
- heavy ion collisions (13)
- Kollisionen schwerer Ionen (11)
- Quark Gluon Plasma (8)
- Quark-Gluon-Plasma (8)
- equation of state (8)
- QGP (7)
- quark gluon plasma (7)
- quark-gluon plasma (7)

#### Institute

- Physik (364)
- Frankfurt Institute for Advanced Studies (FIAS) (48)
- Wirtschaftswissenschaften (7)
- Informatik (5)
- Mathematik (5)
- Rechtswissenschaft (4)
- Medizin (3)
- Zentrum für Nordamerika-Forschung (ZENAF) (1)
- Extern (1)
- Gesellschaftswissenschaften (1)

- Handwriting analysis for diagnosis and prognosis of Parkinson’s disease (2006)
- At present, there are no quantitative, objective methods for diagnosing the Parkinson disease. Existing methods of quantitative analysis by myograms suffer by inaccuracy and patient strain; electronic tablet analysis is limited to the visible drawing, not including the writing forces and hand movements. In our paper we show how handwriting analysis can be obtained by a new electronic pen and new features of the recorded signals. This gives good results for diagnostics. Keywords: Parkinson diagnosis, electronic pen, automatic handwriting analysis

- Impact of baryon resonances on the chiral phase transition at finite temperature and density (2004)
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.

- Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model (2002)
- The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrizations of a chiral SU(3) sigma omega model. The selfconsistent collective expansion includes the e ects of e ective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show di erent types of phase transitions and even a crossover. The influence of the order of the phase transition and of the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or a smooth crossover lead to distinctly di erent HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears di cult to achieve within the ideal hydrodynamic approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC.

- Particle ratios at RHIC : effective hadron masses and chemical freeze-out (2002)
- The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) theta - omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent e ective hadron masses and e ective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three di erent parametrizations of the model, which show di erent types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters di er considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out di er up to 150 MeV from their vacuum values.

- Hadrons in dense resonance matter: a chiral SU(3) approach (2000)
- A nonlinear chiral SU(3) approach including the spin 3 2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Di erent methods of mass generation show significant differences in the properties of the spin- 3 2 particles and in the nuclear equation of state

- Chiral model for dense, hot and strange hadronic matter (1999)
- Introduction: Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One succesfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models [1], where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting e ective models. It has been shown [2,3] that effective sigma-omega models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] we have shown that an extended SU(3) × SU(3) chiral sigma-omega model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet[5]), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here we will discuss the predictions of this model for dense, hot, and strange hadronic matter.

- In-medium vector meson masses in a chiral SU(3) model (2003)
- A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the e ects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation e ects from the nucleon sector and is not observed in the mean field approximation.

- Critical review of quark gluon plasma signals (2000)
- Compelling evidence for a new form of matter has been claimed to be formed in Pb+Pb collisions at SPS. We critically review two suggested signatures for this new state of matter: First the suppression of the J/psi , which should be strongly suppressed in the QGP by two different mechanisms, the color-screening [1] and the QCD-photoe ect [2]. Secondly the measured particle, in particular strange hadronic, ratios might signal the freeze-out from a quark-gluon phase.

- Current status of quark gluon plasma signals (2001)
- Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.

- Elliptic flow analysis at RHIC with the Lee-Yang Zeroes method in a relativistic transport approach (2006)
- The Lee-Yang zeroes method is applied to study elliptic flow (v_2) in Au+Au collisions at sqrt s =200 A GeV, with the UrQMD model. In this transport approach, the true event plane is known and both the nonflow effects and event-by-event v_2 fluctuations exist. Although the low resolutions prohibit the application of the method for most central and peripheral collisions, the integral and differential elliptic flow from the Lee-Yang zeroes method agrees with the exact v_2 values very well for semi-central collisions.