## Universitätspublikationen

### Refine

#### Year of publication

#### Document Type

- Preprint (8)
- Doctoral Thesis (6)
- Article (3)

#### Language

- English (17) (remove)

#### Keywords

- Quark-Gluon-Plasma (17) (remove)

#### Institute

- Properties of hadronic matter near the phase transition (2010)
- In order to fully understand the new state of matter formed in heavy ion collisions, it is vital to isolate the always present final state hadronic contributions within the primary Quark-Gluon Plasma (QGP) experimental signatures. Previously, the hadronic contributions were determined using the properties of the known mesons and baryons. However, according to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M = 2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are "missing" hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these "missing" Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. One can conclude that the time scales to produce the required amount of hadronic yields are too long to allow for the hadrons to reach chemical equilibrium within the lifetime of a cooling hadronic fireball. Because gluon fusion can quickly produce strange quarks, it has been suggested that the hadrons are born into chemical equilibrium following the Quantum Chromodynamics (QCD) phase transition. However, we show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X X pairs (where X = p, K, Lambda, or Omega) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. We compare the thermodynamic properties of our model to recent lattice results and find that for both critical temperatures, Tc = 176 MeV and Tc = 196 MeV, the hadrons can reach chemical equilibrium on very short time scales. Furthermore the ratios p/pi, K/pi , Lambda/pi, and Omega/pi match experimental values well in our dynamical scenario. The effects of the "missing" Hagedorn states are not limited to the chemical equilibration time. Many believe that the new state of matter formed at RHIC is the closet to a perfect fluid found in nature, which implies that it has a small shear viscosity to entropy density ratio close to the bound derived using the uncertainty principle. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, eta/s, of hadronic matter near Tc that is close to 1/(4pi). Furthermore, the large trace anomaly and the small speed of sound near Tc computed within this model agree well with recent lattice calculations. We also comment on the behavior of the bulk viscosity to entropy density ratio of hadronic matter close to the phase transition, which qualitatively has a different behavior close to Tc than a hadron gas model with only the known resonances. We show how the measured particle ratios can be used to provide non-trivial information about Tc of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the "missing" Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, TH , and leads to a slight overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sqrt{sN N} = 200 GeV the best square fit measure, chi^2 , occurs at TH = Tc = 176 MeV and produces a chemical freeze-out temperature of 172.6 MeV and a baryon chemical potential of 39.7 MeV.

- Probing the QCD Phase Diagram with Compact Stars (2010)
- In this work we study compact stars, i.e. neutron stars, as cosmic laboratories for the nuclear matter. With a mass of around 1 - 3 solar masses and a radius of around 10km, compact stars are very dense and, besides nucleons, can contain exotic matter such as hyperons or quark matter. The KaoS collaboration studied nuclear matter for densities up to 2-3 times saturation density by analysing kaon multiplicities from Au+Au and C+C collisions. The results show that nuclear matter in the corresponding density region is very compressible, with a compressibility of <200MeV. For such soft nuclear equations of state the maximum masses of neutron stars are ca. 1.8 - 1.9 solar masses, whereas the central densities are higher than 5 times nuclear saturation density and therefore point towards a possible phase transition to quark matter. If quark matter would be present in the interior of neutron stars, so-called hybrid stars, it could be produced already during their birth in supernova explosions. To study this we implement a quark matter phase transition in a hadronic equation of state which is used in supernova simulations. Supernova simulations of low and intermediate mass progenitors and two different bag constants show a collapse of the proto neutron star due to the softening of the equations of state in the quark-hadron mixed phase. The stiffening of the equation of state for pure quark matter halts the collapse and leads to the production of a second shock wave. The second shock wave is energetic enough to lead to an explosion of the star and produces a neutrino burst when passing the neutrinospheres. Furthermore, first studies of the longtime cooling of hybrid stars show, that colour superconductivity can significantly influence the cooling behaviour of hybrid stars, if all quarks form Cooper Pairs. For the so-called CSL phase (colour-spin locking) with pairing energies of several MeV, the cooling of the quark phase is suppressed and the hybrid star appears as a pure hadronic star.

- Modelling ultra-relativistic heavy ion collisions with the quark Molecular Dynamics qMD (2005)
- This thesis presents a model for the dynamical description of deconfined quark matter created in ultra-relativistic heavy ion collisions, treating quarks and antiquarks as classical point particles subject to a colour-dependent, Cornell-type potential interaction. The model provides a dynamical handle for hadronization via the recombination of quarks and antiquarks in colour neutral clusters. Gluons are not included explicitly in the model,but are described in an effective manner by the means of the potential interaction. The model includes four different quark flavours (up, down, strange and charm) and uses current masses for the quarks. The dynamical evolution of a system of colour charges subject to the Hamiltonian equations of motion of the model yields the formation of colour neutral clusters of quarks and antiquarks, which are subject only to a small remaining interaction, the strong interquark potential notwithstanding. These clusters can be mapped onto hadrons and hadronic resonances. Thus, the model allows a dynamical description of quarks degrees of freedom in heavy ion collisions, including a recombination scheme for hadronization. The thermal properties of the model turn pout to be very satisfying. The model shows a transition from a confining phase to a deconfined phase with rising temperature, going hand in hand with a softest point in the equation of state and a rise of energy density and pressure to the Stefan-Boltzmann limit of a gas of quarks and antiquarks. Moreover, the potential interaction is screened in the deconfined phase. For the dynamical description of ultra-relativistic heavy ion collision, the qMD model is coupled to UrQMD as a generator for its initial conditions. In this way, a fully dynamical description of the expansion and hadronization of the fireball created in such collisions can be achieved. Non-equilibrium aspects of the expansion dynamics and hadronization by recombination of quarks and antiquarks are discussed in detail, and a comparison with experimental data of collisions at the CERN-SPS is presented. The big advantage of the qMD model is the possibility to study cluster formation, including exotic clusters, and fluctuations in a dynamical manner. As an example, event-by-event fluctuations in electric charge are studied. Such fluctuations have been proposed as a clear criterion to distinguish a deconfined system from a hadrons gas. However, experimental data show hadron gas fluctuation measures even at RHIC, where deconfinement is taken for granted. We will see how the dynamics of quark recombination washes out the quark-gluon plasma signal in the fluctuation criterion. Moreover, we will discuss briefly the problem of entropy at recombination. In a second application, the formation of exotic hadronic clusters, larger than usual mesons and baryons, is studied. Such clusters could provide new measures for the thermalization and homogenization of a deconfined gas of colour charges. Moreover, number estimates for exotic clusters from recombination are considerably lower than corresponding predictions from thermal models, providing a clear difference between statistical hadronization and hadronization via quark recombination. A detailed analysis is provided for pentaquark candidates such as the Theta-Plus. It turns out that the distribution of exotic states over strangeness, isospin, and spin could provide a sensitive measure for thermalization and decorrelation in the deconfined quark phase, if it could be measured.

- Thermal photons as a measure for the rapidity dependence of the temperature (1995)
- The rapidity distribution of thermal photons produced in Pb+Pb collisions at CERN-SPS energies is calculated within scaling and three- fluid hydrodynamics. It is shown that these scenarios lead to very different rapidity spectra. A measurement of the rapidity dependence of photon radiation can give cleaner insight into the reaction dynamics than pion spectra, especially into the rapidity dependence of the temperature.

- A Stopped delta-matter source in heavy ion collisions at 10-GeV/N? (1994)
- We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta1232 resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering e ects consecutive excitation and deexcitation of Delta's lead to a long apparent life- time (> 10 fm/c) and rather large volumina (several 100 fm3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS.

- Pion and thermal photon spectra as a possible signal for a phase transition (2005)
- We calculate thermal photon and neutral pion spectra in ultrarelativistic heavy-ion collisions in the framework of three-fluid hydrodynamics. Both spectra are quite sensitive to the equation of state used. In particular, within our model, recent data for S + Au at 200 AGeV can only be understood if a scenario with a phase transition (possibly to a quark-gluon plasma) is assumed. Results for Au+Au at 11 AGeV and Pb + Pb at 160 AGeV are also presented.

- Monte Carlo model for multiparticle production at ultrarelativistic energies (1994)
- The Monte Carlo parton string model for multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies is described. An adequate choice of the parameters in the model gives the possibility of recovering the main results of the dual parton model, with the advantage of treating both hadron and nuclear interactions on the same footing, reducing them to interactions between partons. Also the possibility of considering both soft and hard parton interactions is introduced.

- Nucleus-nucleus collisions at highest energies (1996)
- The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.

- Hadron production from a hadronizing quark gluon plasma (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source versus a time-dependent, non-equilibrium hadronization off a quark gluon plasma droplet. Due to the time-dependent particle evaporation off the hadronic surface in the latter approach the hadron ratios change (by factors of / 5) in time. The overall particle yields then reflect time averages over the actual thermodynamic properties of the system at a certain stage of evolution.

- Phase transition of a finite quark-gluon plasma (1997)
- The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.