## Universitätspublikationen

### Refine

#### Year of publication

- 2005 (40) (remove)

#### Document Type

- Preprint (40) (remove)

#### Keywords

- heavy-ion collisions (2)
- A+A collisions (1)
- Charm Produktion (1)
- Charmonium (1)
- D-meson spectral density (1)
- DN interaction (1)
- Employment Effects (1)
- Evaluation (1)
- Gravitational radiation (1)
- Hadron (1)

#### Institute

- The phase diagram of neutral quark matter : self-consistent treatment of quark masses (2005)
- We study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of the Nambu--Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength.

- Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions (2005)
- We present a detailed study of chemical freeze-out in p-p, C-C, Si-Si and Pb-Pb collisions at beam momenta of 158A GeV as well as Pb-Pb collisions at beam momenta of 20A, 30A, 40A and 80A GeV. By analyzing hadronic multiplicities within the statistical hadronization model, we have studied the parameters of the source as a function of the number of the participating nucleons and the beam energy. We observe a nice smooth behaviour of temperature, baryon chemical potential and strangeness under-saturation parameter as a function of energy and nucleus size. Interpolating formulas are provided which allow to predict the chemical freeze-out parameters in central collisions at centre-of-mass energies > 4.5 GeV and for any colliding ions. Specific discrepancies between data and model emerge in particle ratios in Pb-Pb collisions at SPS between 20A and 40A GeV of beam energy which cannot be accounted for in the considered model schemes.

- Gravitational radiation from elastic particle scattering in models with extra dimensions (2005)
- In this paper we derive a formula for the energy loss due to elastic N to N particle scattering in models with extra dimensions that are compactified on a radius R. In contrast to a previous derivation we also calculate additional terms that are suppressed by factors of frequency over compactification radius. In the limit of a large compactification radius R those terms vanish and the standard result for the non compactified case is recovered.

- Summary of theoretical contributions (2005)
- Results from various theoretical approaches and ideas presented at this exciting meeting (summary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP - 2005)) are reviewed. I also point towards future directions, in particular hydrodynamic behaviour induced by jets traveling through the quark-gluon plasma, which might be worth looking at in more detail.

- Pion and thermal photon spectra as a possible signal for a phase transition (2005)
- We calculate thermal photon and neutral pion spectra in ultrarelativistic heavy-ion collisions in the framework of three-fluid hydrodynamics. Both spectra are quite sensitive to the equation of state used. In particular, within our model, recent data for S + Au at 200 AGeV can only be understood if a scenario with a phase transition (possibly to a quark-gluon plasma) is assumed. Results for Au+Au at 11 AGeV and Pb + Pb at 160 AGeV are also presented.

- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k

- Sectoral heterogeneity in the employment effects of job creation schemes in Germany (2005)
- Job creation schemes (JCS) have been one important programme of active labour market policy in Germany aiming at the re-integration of hard-to-place unemployed individuals into regular employment. In ontrast to earlier evaluation studies of these programmes based on survey data, we use administrative data containing more than 11,000 participants for our analysis and hence, can take effect heterogeneity explicitly into account. We focus on effect heterogeneity caused by differences in the implementation of programmes (economic sector, types of support and implementing institutions). The results are rather discouraging and show that in general, JCS are unable to improve the re-integration chances of participants into regular employment.

- Charmonium chemistry in A+A collisions at relativistic energies (2005)
- Charmonium production and suppression in heavy-ion collisions at relativistic energies is investigated within di erent models, i.e. the comover absorption model, the threshold suppression model, the statistical coalescence model and the HSD transport approach. In HSD the charmonium dissociation cross sections with mesons are described by a simple phase-space parametrization including an e ective coupling strength |Mi|2 for the charmonium states i =Xc,J/psi, psi'. This allows to include the backward channels for charmonium reproduction by DD channels which are missed in the comover absorption and threshold suppression model employing detailed balance without introducing any new parameters. It is found that all approaches yield a reasonable description of J/psi suppression in S+U and Pb+Pb collisions at SPS energies. However, they di er significantly in the psi'/J/psi ratio versus centrality at SPS and especially at RHIC energies. These pronounced differences can be exploited in future measurements at RHIC to distinguish the hadronic rescattering scenarios from quark coalescence close to the QGP phase boundary.

- Effect of isovector-scalar meson on neutron star matter in strong magnetic fields (2005)
- We study the effects of isovector-scalar meson delta on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the delta-field leads to a remarkable splitting of proton and neutron effective masses. The strength of delta-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at B < 10^15G but becomes softer at stronger magnetic field after including the delta-field. The AMM terms can affect the system merely at ultrastrong magnetic field(B > 10^19G). In the range of 10^15 G - 10^18 G the properties of neutron-star matter are found to be similar with those without magnetic fields.

- Mach shocks induced by partonic jets in expanding quark-gluon plasma (2005)
- We study Mach shocks generated by fast partonic jets propagating through a deconfined strongly-interacting matter. Our main goal is to take into account different types of collective motion during the formation and evolution of this matter. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. The observed broadening of the near-side two-particle correlations in pseudorapidity space is explained by the Bjorken-like longitudinal expansion. Three-particle correlation measurements are proposed for a more detailed study of the Mach shock waves.