## Universitätspublikationen

### Refine

#### Year of publication

#### Document Type

- Article (442)
- Preprint (364)
- Doctoral Thesis (340)
- Diplom Thesis (119)
- Conference Proceeding (59)
- Bachelor Thesis (42)
- Master's Thesis (24)
- Other (24)
- Working Paper (16)
- Periodical Parts (14)

#### Keywords

- Kollisionen schwerer Ionen (30)
- heavy ion collisions (23)
- heavy ion collisions (18)
- Kollisionen schwerer Ionen (17)
- Quark-Gluon-Plasma (17)
- quark-gluon plasma (12)
- Quark Gluon Plasma (9)
- equation of state (9)
- Hadron (8)
- QGP (8)

#### Institute

- Physik (1459) (remove)

- What can we learn from fluctuations of particle ratios? (2007)
- We explain how fluctuations of ratios can constrain and falsify the statistical model of particle production in heavy ion collisions, using K/p fluctuations as an example. We define an observable capable of determining which statistical model, if any, governs freeze-out in ultrarelativistic heavy ion collisions. We calculate this observable for K/p fluctuations, and show that it should be the same for RHIC and LHC energies, as well as independent of centrality, if the Grand-Canonical statistical model is an appropriate description and chemical equilibrium applies. We describe variations of this scaling for deviations from this scenario, such as light quark chemical non-equilibrium, strange quark over-saturation and local conservation (canonical ensemble) for strange quarks. We also introduce a similar observable capable, together with the published K*/K measurement, of ascertaining if an interacting hadron gas phase governs the system between thermal and chemical freeze-out, and of ascertaining its duration and impact on hadronic chemistry.

- Chiral symmetry restoration and deconfinement in neutron stars (2009)
- Neutron stars are very dense objects. One teaspoon of their material would have a mass of five billion tons. Their gravitational force is so strong that if an object were to fall from just one meter high it would hit the surface of the respective neutron star at two thousand kilometers per second. In such dense bodies, different particles from the ones present in atomic nuclei, the nucleons, can exist. These particles can be hyperons, that contain non-zero strangeness, or broader resonances. There can also be different states of matter inside neutron stars, such as meson condensates and if the density is height enough to deconfine the nucleons, quark matter. As new degrees of freedom appear in the system, different aspects of matter have to be taken into account. The most important of them being the restoration of the chiral symmetry. This symmetry is spontaneously broken, which is a fact related to the presence of a condensate of scalar quark-antiquark pairs, that for this reason is called chiral condensate. This condensate is present at low densities and even in vacuum. It is important to remember at this point that the modern concept of vacuum is far away from emptiness. It is full of virtual particles that are constantly created and annihilated, being their existence allowed by the uncertainty principle. At very high temperature/density, when the composite particles are dissolved into constituents, the chiral consensate vanishes and the chiral symmetry is restored. To explain how and when chiral symmetry is restored in neutron stars we use a model called non-linear sigma model. This is an effective quantum relativistic model that was developed in order to describe systems of hadrons interacting via meson exchange. The model was constructed from symmetry relations, which allow it to be chiral invariant. The first consequence of this invariance is that there are no bare mass terms in the lagrangian density, causing all, or most of the particles masses to come from the interactions with the medium. There are still other interesting features in neutron stars that cannot be found anywhere else in nature. One of them is the high isospin asymmetry. In a normal nucleus, the amount of protons and neutrons is more or less the same. In a neutron star the amount of neutrons is much higher than the protons. The resulting extra energy (called Fermi energy) increases the energy of the system, allowing the star to support more mass against gravitational collapse. As a consequence of that in early stages of the neutron star evolution, when there are still many trapped neutrinos, the proton fraction is higher than in later stages and consequently the maximum mass that the star can support against gravity is smaller. This, between many other features, shows how the microscopic phenomena of the star can reflect into the macroscopic properties. Another important property of neutron stars is charge neutrality. It is a required assumption for stability in neutron stars, but there are others. One example is chemical equilibrium. It means that the number of particles from each kind is not conserved, but they are created and annihilated through specific reactions that happen at the same rate in both directions. Although to calculate microscopic physics of neutron stars the space-time of special relativity, the Minkowski space, can be used, this is not true for the global properties of the star. In this case general relativity has to be used. The solution of Einstein's equations simplified to static, spherical and isotropic stars correspond to the configurations in which the star is in hydrostatic equilibrium. That means that the internal pressure, coming mainly from the Fermi energy of the neutrons, balances the gravity avoiding the collapse. When rotation is included the star becomes more stable, and consequently, can be more massive. The movement also makes it non-spherical, what requires the metric of the star to also be a function of the polar coordinate. Another important feature that has to be taken into account is the dragging of the local inertial frame. It generates centrifugal forces that are not originated in interactions with other bodies, but from the non-rotation of the frame of reference within which observations are made. These modifications are introduced through the Hartle's approximation that solves the problem by applying perturbation theory. In the mean field approximation, the couplings as well as the parameters of the non-linear sigma model are calibrated to reproduce massive neutron stars. The introduction of new degrees of freedom decreases the maximum mass allowed for the neutron star, as they soften the equation of state. In practice, the only baryons present in the star besides the nucleons are the Lambda and Sigma-, in the case in which the baryon octet is included, and Lambda and Delta-,0,+,++, in the case in which the baryon decuplet is included. The leptons are included to ensure charge neutrality. We choose to proceed our calculations including the baryon octet but not the decuplet, in order to avoid uncertainties in the couplings. The couplings of the hyperons were fitted to the depth of their potentials in nuclei. In this case the chiral symmetry restoration can be observed through the behavior of the related order parameter. The symmetry begins to be restored inside neutron stars and the transition is a smooth crossover. Different stages of the neutron star cooling are reproduced taking into account trapped neutrinos, finite temperature and entropy. Finite-temperature calculations include the heat bath of hadronic quasiparticles within the grand canonical potential of the system. Different schemes are considered, with constant temperature, metric dependent temperature and constant entropy. The neutrino chemical potential is introduced by fixing the lepton number in the system, that also controls the amount of electrons and protons (for charge neutrality). The balance between these two features is delicate and influenced mainly by the baryon number conservation. Isolated stars have a fixed number of baryons, which creates a link between different stages of the cooling. The maximum masses allowed in each stage of the cooling process, the one with high entropy and trapped neutrinos, the deleptonized one with high entropy, and the cold one in beta equilibrium. The cooling process is also influenced by constraints related to the rotation of the star. When rotation is included the star becomes more stable, and consequently, can be more massive. The movement also deforms it, requiring the metric of the star to include modifications that are introduced through the use of perturbation theory. The analysis of the first stages of the neutron star, when it is called proto-neutron star, gives certain constraints on the possible rotation frequencies in the colder stages. Instability windows are calculated in which the star can be stable during certain stages but collapses into black holes during the cooling process. In the last part of the work the hadronic SU(3) model is extended to include quark degrees of freedom. A new effective potential to the order parameter for deconfinement, the Polyakov loop, makes the connection between the physics at low chemical potential and hight temperature of the QCD phase diagram with the height chemical potential and low temperature part. This is done through the introduction of a chemical potential dependency on the already temperature dependent potential. Analyzing the effect of both order parameters, the chiral condensate and the Polyakov loop, we can drawn a phase diagram for symmetric as well as for star matter. The diagram contains a crossover region as well as a first order phase transition line. The new couplings and parameters of the model are chosen mainly to fit lattice QCD, including the position of the critical point. Finally, this matter containing different degrees of freedom (depending on which phase of the diagram we are) is used to calculate hybrid star properties.

- Induced charge computation (2009)
- One of the main aspects of statistical mechanics is that the properties of a thermodynamics state point do not depend on the choice of the statistical ensemble. It breaks down for small systems e.g. single molecules. Hence, the choice of the statistical ensemble is crucial for the interpretation of single molecule experiments, where the outcome of measurements depends on which variables or control parameters, are held fixed and which ones are allowed to fluctuate. Following this principle, this thesis investigates the thermodynamics of a single polymer pulling experiments within two different statistical ensembles. The scaling of the conjugate chain ensembles, the fixed end-to-end vector (Helmholtz) and the fixed applied force (Gibbs), are studied in depth. This thesis further investigates the ensemble equivalence for different force regimes and polymer-chain contour lengths. Using coarse-grained molecular dynamic simulations, i.e. Langevin dynamics, the simulations were found to complement the theoretical predictions for the scaling of ensemble difference of Gaussian chains in different force-regimes, giving special attention to the zero force regime. After constructing Helmholtz and Gibbs conjugate ensembles for a Gaussian chain, two different data sets of thermodynamic states on the force-extension plane, i.e. force-extension curves, were generated. The ensemble difference is computed for different polymer-chain lengths by using force-extension curves. The scaling of the ensemble difference versus relative polymer-chain length under different force regimes has been derived from the simulation data and compared to theoretical predictions. The results demonstrate that the Gaussian chain in the zero force limit generates nonequivalent ensembles, regardless of its equilibrium bond length and polymer-chain contour length. Moreover, if polymers are charged in confinement, coarse-graining is problematic, owing to dielectric interfaces. Hence, the effect of dielectric interfaces must be taken into account when describing physical systems such as ionic channels or biopolymers inside nanopores. It is shown that the effect of dielectrics is crucial for the dynamics of a biopolymer or an ion inside a nanopore. In the simulations, the feasibility of an efficient and accurate computation of electrostatic interactions in the presence of an arbitrarily shaped dielectric domain is challenging. Several solutions for this problem have been previously proposed in the literature such as a density functional approach, or transforming problem at hand into an algebraic problem ( Induced Charge Computation (ICC) ) and boundary element methods. Even though the essential concept is the same, which is to replace the dielectric interface with a polarization charge density, these approaches have been analyzed and the ICC algorithm has been implemented. A new superior boundary element method has been devised utilizing the force computation via the Particle-Particle Particle-Mesh (P3M) method for periodic geometries (ICCP3M). This method has been compared to the ICC algorithm, the algebraic solutions, and to density functional approaches. Extensive numerical tests against analytically tractable geometries have confirmed the correctness and applicability of developed and implemented algorithms, demonstrating that the ICCP3M is the fastest and the most versatile algorithm. Further optimization issues are also discussed in obtaining accurate induced charge densities. The potential of mean force (PMF) of DNA modelled on a coarsed-grain level inside a nanopore is investigated with and without the inclusion of dielectric effects. Despite the simplicity of the model, the dramatic effect of dielectric inclusions is clearly seen in the observed force profile.

- Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments (2008)
- This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. ...

- Organic donor-acceptor thin film systems : towards optimized growth conditions (2009)
- In this work the preparation of organic donor-acceptor thin films was studied. A chamber for organic molecular beam deposition was designed and integrated into an existing deposition system for metallic thin films. Furthermore, the deposition system was extended by a load-lock with integrated bake-out function, a chamber for the deposition of metallic contacts via stencil mask technique and a sputtering chamber. For the sublimation of the organic compounds several effusion cells were designed. The evaporation characteristic and the temperature profile within the cells was studied. Additionally, a simulation program was developed, which calculates the evaporation characteristics of different cell types. The following processes were integrated: evaporation of particles, migration on the cell walls and collisions in the gas phase. It is also possible to consider a temperature gradient within the cell. All processes can be studied separately and their relative strength can be varied. To verify the simulation results several evaporation experiments with different cell types were employed. The thickness profile of the prepared thin films was measured position-dependently. The results are in good agreement with the simulation. Furthermore, the simulation program was extended to the field of electron beam induced deposition (EBID). The second part of this work deals with the preparation and characterization of organic thin films. The focus hereby lies on the charge transfer salt (BEDT-TTF)(TCNQ), which has three known structure variants. Thin films were prepared by different methods of co-evaporation and were studied with optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy (EDX).The formation of the monoclinic phase of (BEDT-TTF)(TCNQ) could be shown. As a last part tunnel structures were prepared as first thin film devices and measured in a He4 cryostat.

- Untersuchung der Zerfallsmechanismen und der Lokalisierung von Vakanzen in Ne2 (2009)
- In der vorliegenden Arbeit wurde die 1s Photoionisation von Neondimeren mit einer Photonenenergie von 10 eV über der 1s Schwelle von Neon durchgeführt. Das Ziel dieser Messung war die Beantwortung der seit vielen Jahren diskutierten Frage nach der Lokalisierung oder Delokalisierung von Vakanzen in homonuklearen diatomaren Systemen am Beispiel des Neondimers. Können die Vakanzen also einem Atom des Dimers zugeordnet werden oder sind sie über beide Atome verteilt? Bezüglich dieser Frage wurden sowohl die in der Photoionisation direkt entstandenen 1s Vakanzen als auch die aus der Relaxation durch einen interatomic Coulombic decay (ICD) resultierenden Vakanzen in der Valenzschale des Neondimers untersucht. Als Observable dienten dabei die Elektronen-Winkelverteilungen im dimerfesten Koordinatensystem, wobei eine bezüglich der ‘rechten’ und der ‘linken’ Seite des homonuklearen diatomaren Moleküls auftretende Asymmetrie in der Winkelverteilung eindeutig eine Lokalisierung der Vakanz indiziert. Dies lässt sich damit begründen, dass die Elektronenwellen im Fall einer delokalisierten Vakanz durch die symmetrisierten Wellenfunktionen beschrieben werden, welche sich aus der kohärenten Überlagerung der lokalisierten Wellenfunktionen ergeben. Die resultierende Winkelverteilung der Elektronen um die Dimerachse ist somit symmetrisch. Im Fall einer lokalisierten Vakanz wird die Elektronenwelle dagegen durch die ‘rechts’ oder ‘links’ lokalisierten Wellenfunktionen, welche aus der kohärenten Überlagerung der symmetrisierten Wellenfunktionen gebildet werden, beschrieben, so dass abhängig von der Elektronenwellenlänge Asymmetrien in der Elektronen-Winkelverteilung auftreten können. Die Möglichkeit, eine eventuelle Asymmetrie in der Winkelverteilung um die Dimerachse zu beobachten ist allerdings nur dann gegeben, wenn die beiden Seiten des Dimers im Anschluss an die Reaktion unterscheidbar sind, d.h. der Ursprung des emittierten Elektrons feststellbar ist, da sich sonst der Fall einer ‘links’ lokalisierten Vakanz mit dem Fall einer ‘rechts’ lokalisierten Vakanz kohärent überlagert. Die Unterscheidung konnte in der vorliegenden Messung anhand der aus einigen Relaxationen hervorgehenden unterschiedlichen Ladungen der ionischen Fragmente des Neondimers durchgeführt werden. Insgesamt wurden im Anschluss an die 1s Photoionisation von Ne2 mit einer Rate von 3:1 der symmetrische Ladungsaufbruch Ne1+ + Ne1+ und der für die Untersuchung der Winkelverteilungen relevante asymmetrische Ladungsaufbruch Ne2+ + Ne1+ des Neondimers beobachtet. Alle in diesen beiden Ladungsaufbrüchen resultierenden intra- und interatomaren Relaxationsprozesse sowie ihre Raten wurden im Rahmen dieser Arbeit identifiziert und analysiert. Der dominante Zerfallskanal des symmetrischen Ladungsaufbruchs resultierte dabei aus dem im Anschluss an einen KL2,3L2,3 stattfindenden Radiative Charge Transfer, bei welchem unter Aussendung eines Photons ein Ladungsaustausch zwischen den Neonionen des Dimers stattfindet. Der dominante Zerfallskanal des asymmetrischen Ladungsaufbruchs wurde durch den im Anschluss an einen KL1L2,3 stattfindenden ICD bestimmt. Bei diesem in Clustern auftretenden Relaxationsprozess wird die Innerschalenvakanz aus Atom 1 durch ein Valenzelektron aus Atom 1 aufgefüllt. Sobald die Relaxationsenergie dabei nicht ausreicht, um, wie beim Augerzerfall, ein weiteres Valenzelektron aus Atom 1 zu ionisieren, wird die Energie mittels eines virtuellen Photons zum neutralen Nachbaratom des Dimers transferiert, und aus diesem wird ein Elektron, das ICD-Elektron, emittiert. Zur experimentellen Untersuchung der verschiedenen Zerfälle wurde die COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy)-Technik verwendet. Bei dieser Impulsspektroskopie werden die Fragmente mit einer Raumwinkelakzeptanz von 4pi mit Hilfe eines elektrischen und eines magnetischen Feldes auf die ortsauflösenden Detektoren geführt, und ihre Flugzeiten und Auftrefforte werden gemessen. Die COLTRIMS-Technik zeichnet sich dabei dadurch aus, dass eine koinzidente Messung der Elektronen und Ionen möglich ist, wodurch die Fragmente eines Reaktionsereignisses einander zugeordnet werden können. Innerhalb der Reaktionsereignisse fragmentierte das Neondimer im Anschluss an die Relaxation in beiden Ladungsaufbrüchen Ne1+ + Ne1+ und Ne2+ + Ne1+ unter 180° in einer Coulombexplosion. Somit spiegelten die Richtungen der Relativimpulse der Ionen im Rahmen der ‘Axial-Recoil-Approximation’ die Position der Dimerachse zum Zeitpunkt der Reaktion wider, und aus den Impulsen der Elektronen konnten die Emissionsrichtungen der Elektronen bezüglich der Dimerachse abgeleitet werden. In dieser Arbeit wurde mit der beschriebenen Messtechnik eine deutliche Asymmetrie in der Winkelverteilung der 1s Photoelektronen sowie der 2p ICD-Elektronen um die Dimerachse beobachtet. Die gemessene Winkelverteilung der 1s Photoelektronen wies dabei eine qualitativ sehr gute Übereinstimmung mit einer innerhalb einer Hartree-Fock-Rechnung erhaltenen Winkelverteilung für eine vollständig lokalisierte 1s Vakanz im Neondimer auf. Für die Winkelverteilungen der ICD-Elektronen existieren bis heute noch keine theoretischen Vorhersagen. Mit den Ergebnissen der vorliegenden Arbeit konnte somit gezeigt werden, dass entgegen den heute gängigen Theorien zur Beschreibung des Neondimers sowohl die Vakanzen der innersten Schale als auch die Vakanzen der Valenzschale des Neondimers als lokalisiert beschrieben werden müssen.

- Application of the Functional Renormalization Group to Bose systems with broken symmetry (2009)
- The physics of interacting bosons in the phase with broken symmetry is determined by the presence of the condensate and is very different from the physics in the symmetric phase. The Functional Renormalization Group (FRG) represents a powerful investigation method which allows the description of symmetry breaking with high efficiency. In the present thesis we apply FRG for studying the physics of two different models in the broken symmetry phase. In the first part of this thesis we consider the classical O(1)-model close to the critical point of the second order phase transition. Employing a truncation scheme based on the relevance of coupling parameters we study the behavior of the RG-flow which is shown to be influenced by competition between two characteristic lengths of the system. We also calculate the momentum dependent self-energy and study its dependence on both length scales. In the second part we apply the FRG-formalism to systems of interacting bosons in the phase with spontaneously broken U(1)-symmetry in arbitrary spatial dimensions at zero temperature. We use a truncation scheme based on a new non-local potential approximation which satisfy both exact relations postulated by Hugenholtz and Pines, and Nepomnyashchy and Nepomnyashchy. We study the RG-flow of the model, discuss different scaling regimes, calculate the single-particle spectral density function of interacting bosons and extract both damping of quasi-particles and spectrum of elementary excitations from the latter.

- Kaon and pion production in centrality selected minimum bias Pb+Pb collisions at 40 and 158A GeV (2009)
- Results on charged kaon and negatively charged pion production and spectra for centrality selected Pb+Pb mininimum bias events at 40 and 158A GeV have been presented in this thesis. All analysis are based on data taken by the NA49 experiment at the accelerator Super Proton Synchrotron (SPS) at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland. The kaon results are based on an analysis of the mean energy loss <dE/dx> of the charged particles traversing the detector gas of the time projection chambers (TPCs). The pion results are from an analysis of all negatively charged particles h- corrected for contributions from particle decays and secondary interactions. For the dE/dx analysis of charged kaons, main TPC tracks with a total momentum between 4 and 50 GeV have been analyzed in logarithmic momentum log(p) and transverse momentum pt bins. The resulting dE/dx spectra have been fitted by the sum of 5 Gaussians, one for each main particle type (electrons, pions, kaons, protons, deuterons). The amplitude of the Gaussian used for the kaon part of the spectra has been corrected for efficiency and acceptance and the binning has been transformed to rapidity y and transverse momentum pt bins. The multiplicity dN/dy of the single rapidity bins has been derived by summing the measured range of the transverse momentum spectra and an extrapolation to full coverage with a single exponential function fitted to the measured range. The results have been combined with the mid-rapidity measurements from the time-of-flight detectors and a double Gaussian fit to the dN/dy spectra has been used for extrapolation to rapidity outside of the acceptance of the dE/dx analysis. For the h- analysis of negatively charged pions, all negatively charged tracks have been analyzed. The background from secondary reactions, particle decays, and gamma-conversions has been corrected with the VENUS event generator. The results were also corrected for efficiency and acceptance and the pt spectra were analyzed and extrapolated where necessary to derive the mean yield per rapidity bin dN/dy. The mean multiplicity <pi-> has been derived by summing up the measured dN/dy and extrapolating the rapidity spectrum with a double Gaussian fit to 4pi coverage. The results have been discussed in detail and compared to various model calculations. Microscopical models like URQMD and HSD do not describe the full complexity of Pb+Pb collisions. Especially the production of the positively charged kaons, which carry the major part of strange quarks, cannot be consistently reproduced by the model calculations. Centrality selected minimum bias Pb+Pb collisions can be described as a mixture of a high-density region of multiply colliding nucleons (core) and practically independent nucleon-nucleon collisions (corona). This leads to a smooth evolution from peripheral to central collisions. A more detailed approach derives the ensemble volume from a percolation of elementary clusters. In the percolation model all clusters are formed from coalescing strings that are assumed to decay statistically with the volume dependence of canonical strangeness suppression. The percolation model describes the measured data for top SPS and RHIC energies. At 40A GeV, the system size dependence of the relative strangeness production starts to evolve from the saturation seen at higher energies from peripheral events onwards towards a linear dependence at SIS and AGS. This change of the dependence on system size occurs in the energy region of the observed maximum of the K+ to pi ratio for central Pb+Pb collisions. Future measurements with heavy ion beam energies around this maximum at RHIC and FAIR as well as the upgraded NA49 successor experiment NA61 will further improve our understanding of quark matter and its reflection in modern heavy ion physics and theories.

- Measurements of Quarkonia with the central detecors of ALICE (2008)
- The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector.