## Physik

### Refine

#### Document Type

- Doctoral Thesis (35) (remove)

#### Language

- English (35) (remove)

#### Keywords

- ALICE (1)
- Activation (1)
- Beschleuniger (1)
- CBM (1)
- Correlated systems (1)
- Correlations (1)
- Density functional theory (1)
- Dissertation (1)
- Dynamical mean field theory (1)
- Fluka (1)

- Investigation of the microscopic behavior of Mott insulators by means of the density functional theory and many-body methods (2012)
- The objective of this work is twofold. First, we explore the performance of the density functional theory (DFT) when it is applied to solids with strong electronic correlations, such as transition metal compounds. Along this direction, particular effort is put into the refinement and development of parameterization techniques for deriving effective models on a basis of DFT calculations. Second, within the framework of the DFT, we address a number of questions related to the physics of Mott insulators, such as magnetic frustration and electron-phonon coupling (Cs2CuCl4 and Cs2CuBr4), high-temperature superconductivity (BSCCO) and doping of Mott insulators (TiOCl). In the frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4, we investigate the interplay between strong electronic correlations and magnetism on one hand and electron-lattice coupling on the other as well as the effect of this interplay on the microscopic model parameters. Another object of our investigations is the oxygen-doped cuprate superconductor BSCCO, where nano-scale electronic inhomogeneities have been observed in scanning tunneling spectroscopy experiments. By means of DFT and many-body calculations, we analyze the connection between the structural and electronic inhomogeneities and the superconducting properties of BSCCO. We use the DFT and molecular dynamic simulations to explain the microscopic origin of the persisting under doping Mott insulating state in the layered compound TiOCl.

- The production of _j63 [eta] and {_w63 [omega] mesons in 3.5 GeV p+p interaction in HADES (2011)
- The study of meson production in proton-proton collisions in the energy range up to one GeV above the production threshold provides valuable information about the nature of the nucleon-nucleon interaction. Theoretical models describe the interaction between nucleons via the exchange of mesons. In such models, different mechanisms contribute to the production of the mesons in nucleon-nucleon collisions. The measurement of total and differential production cross sections provide information which can help in determining the magnitude of the various mechanisms. Moreover, such cross section information serves as an input to the transport calculations which describe e.g. the production of e+e− pairs in proton- and pion-induced reactions as well as in heavy ion collisions. In this thesis, the production of ω and η mesons in proton-proton collisions at 3.5 GeV beam energy was studied using the High Acceptance DiElectron Spectrometer (HADES) installed at the Schwerionensynchrotron (SIS 18) at the Helmholtzzenturm f¨ur Schwerionenforschung in Darmstadt. About 80 000 ω mesons and 35 000 η mesons were reconstructed. Total production cross sections of both mesons were determined. Furthermore, the collected statistics allowed for extracting angular distributions of both mesons as well as performing Dalitz plot studies. The ω and η mesons were reconstructed via their decay into three pions (π+π−π0) in the exclusive reaction pp −→ ppπ+π−π0. The charged particles were identified via their characteristic energy loss, via the measurement of their time of flight and momentum, or using kinematics. The neutral pion was reconstructed using the missing mass method. A kinematic fit was applied to improve the resolution and to select events in which a π0 was produced. The correction of measured yields for the effects of spectrometer acceptance was done as a function of four variables (two invariant masses and two angles). Systematic studies of the acceptance for different input distributions were performed. The measured yields were normalized to the number of measured events of elastic scattering. Systematic errors due to the methods of the data analysis and the background subtraction were investigated. Production angular distributions of ω and η mesons were measured. Both mesons exhibit a slightly anisotropic angular distribution. The Dalitz plot of ω meson production shows indications of resonant production. However, the deviation of the distribution from the one expected by phase space simulations is not large. The Dalitz plot of η meson production shows a signal of the production via the N(1535) resonance, The contribution of N(1535) to the production was quantified to be about 47%. The angular distribution of η mesons does not show significant differences between resonant and non resonant production. The total production cross section of ω mesons in the reaction pp −→ ppω was determined to be 106.5 ± 0.9 (stat) ± 7.9 (sys) [μb] where stat indicates statistical error and sys indicates systematic error, while that of η mesons was determined to be 136.9 ± 0.9 (stat) ± 10.1 (sys) [μb] in the reaction pp −→ ppη

- A numerical renormalization group approach to dissipative quantum impurity systems (2011)
- The miniaturization of electronics is reaching its limits. Structures necessary to build integrated circuits from semiconductors are shrinking and could reach the size of only a few atoms within the next few years. It will be at the latest at this point in time that the physics of nanostructures gains importance in our every day life. This thesis deals with the physics of quantum impurity models. All models of this class exhibit an identical structure: the simple and small impurity only has few degrees of freedom. It can be built out of a small number of atoms or a single molecule, for example. In the simplest case it can be described by a single spin degree of freedom, in many quantum impurity models, it can be treated exactly. The complexity of the description arises from its coupling to a large number of fermionic or bosonic degrees of freedom (large meaning that we have to deal with particle numbers of the order of 10^{23}). An exact treatment thus remains impossible. At the same time, physical effects which arise in quantum impurity systems often cannot be described within a perturbative theory, since multiple energy scales may play an important role. One example for such an effect is the Kondo effect, where the free magnetic moment of the impurity is screened by a "cloud" of fermionic particles of the quantum bath. The Kondo effect is only one example for the rich physics stemming from correlation effects in many body systems. Quantum impurity models, and the oftentimes related Kondo effect, have regained the attention of experimental and theoretical physicists since the advent of quantum dots, which are sometimes also referred to as as artificial atoms. Quantum dots offer a unprecedented control and tunability of many system parameters. Hence, they constitute a nice "playground" for fundamental research, while being promising candidates for building blocks of future technological devices as well. Recently Loss' and DiVincenzo's p roposal of a quantum computing scheme based on spins in quantum dots, increased the efforts of experimentalists to coherently manipulate and read out the spins of quantum dots one by one. In this context two topics are of paramount importance for future quantum information processing: since decoherence times have to be large enough to allow for good error correction schemes, understanding the loss of phase coherence in quantum impurity systems is a prerequisite for quantum computation in these systems. Nonequilibrium phenomena in quantum impurity systems also have to be understood, before one may gain control of manipulating quantum bits. As a first step towards more complicated nonequilibrium situations, the reaction of a system to a quantum quench, i.e. a sudden change of external fields or other parameters of the system can be investigated. We give an introduction to a powerful numerical method used in this field of research, the numerical renormalization group method, and apply this method and its recent enhancements to various quantum impurity systems. The main part of this thesis may be structured in the following way: - Ferromagnetic Kondo Model, - Spin-Dynamics in the Anisotropic Kondo and the Spin-Boson Model, - Two Ising-coupled Spins in a Bosonic Bath, - Decoherence in an Aharanov-Bohm Interferometer.

- Interacting ultracold gases in optical lattices: non-equilibrium dynamics and effects of disorder (2012)
- This dissertation aims at giving a theoretical description of various applications of ultracold gases. A particular focus is cast upon the dynamical evolution of bosonic condensates in non-equilibrium by means of the time-dependent Gutzwiller method. Ground state properties of strongly interacting fermionic atoms in box and speckle disordered lattices are investigated via real-space dynamical mean-field theory. ...

- Strongly correlated ultracold gases in disordered optical lattices (2012)
- Seit Anbeginn der Festkörperphysik ist die Frage, warum manche Materialien metallisch sind, andere dagegen isolierend, von zentraler Bedeutung. Eine erste Erklärung wurde durch die Bändertheorie [23, 44] gegeben. Die Elektronen sind dem periodischen Potential der Rumpfatome ausgesetzt, wodurch ein Energiespektrum bestehend aus Bändern erzeugt wird und die Füllung dieser Bänder bestimmt die Leitungseigenschaften des Festkörpers. ...

- Thermal expansion studies on low-dimensional frustrated quantum magnets: the case of Kappa-(BEDT-TTF) 2 Cu 2 (CN) 3 and azurite (2012)
- Thermal expansion measurements provide a sensitive tool for exploring a material's thermodynamic properties in condensed matter physics as they provide useful information on the electronic, magnetic and lattice properties of a material. In this thesis, thermal expansion measurements have been carried out both at ambient-pressure and under hydrostatic pressure conditions. From the materials point of view, the spin-liquid candidate Kappa-(BEDT-TTF) 2 Cu 2(CN)3 has been studied extensively as a function of temperature and magnetic field. Azurite, Cu 3 (CO 3) 2 (OH) 2 - a realization of a one-dimensional distorted Heisenberg chain is also studied both at ambient and hydrostatic pressure to demonstrate the proper functioning of the newly built setup "thermal expansion under pressure". ...

- Mechanisms of nanofractal structure formation and post-growth evolution (2011)
- Nanotechnology is a rapidly developing branch of science, which is focused on the study of phenomena at the nanometer scale, in particular related to the possibilities of matter manipulation. One of the main goals of nanotechnology is the development of controlled, reproducible, and industrially transposable nanostructured materials. The conventional technique of thin-film growth by deposition of atoms, small atomic clusters and molecules on surfaces is the general method, which is often used in nanotechnology for production of new materials. Recent experiments show, that patterns with different morphology can be formed in the course of nanoparticles deposition process on a surface. In this context, predicting of the final architecture of the growing materials is a fundamental problem worth studying. Another factor, which plays an important role in industrial applications of new materials, is the question of post-growth stability of deposited structures. The understanding of the post-growth relaxation processes would give a possibility to estimate the lifetime of the deposited material depending on the conditions at which the material was fabricated. Controllable post-growth manipulations with the architecture of deposited structures opens new path for engineering of nanostructured materials. The task of this thesis is to advance understanding mechanisms of formation and post-growth evolution of nanostructured materials fabricated by atomic clusters deposition on a surface. In order to achieve this goal the following main problems were addressed: 1. The properties of isolated clusters can significantly differ from those of analogous clusters occurring on a solid surface. The difference is caused by the interaction between the cluster and the solid. Therefore, the understanding of structural and dynamical properties of an atomic cluster on a surface is a topic of intense interest from the scientific and technological point of view. In the thesis, stability, energy, and geometry of an atomic cluster on a solid surface were studied using a liquid drop approach which takes into account the cluster-solid interaction. Geometries of the deposited clusters are compared with those of isolated clusters and the differences are discussed. 2. The formation scenarios of patterns on a surface in the course of the process of cluster deposition depend strongly on the dynamics of deposited clusters. Therefore, an important step towards predicting pattern morphology is to study dynamics of a single cluster on a surface. The process of cluster diffusion on a surface was modeled with the use of classical molecular dynamics technique, and the diffusion coefficients for the silver nanoclusters were obtained from the analysis of trajectories of the clusters. The dependence of the diffusion coefficient on the system’s temperature and cluster-surface interaction was established. The results of the calculations are compared with the available experimental results for the diffusion coefficient of silver clusters on graphite surface. 3. The methods of classical molecular dynamics cannot be used for modeling the self-assembly processes of atomic clusters on a surface, because these processes occur on the minutes timescale, what would require an unachievable computer resource for the simulation. Based on the results of molecular dynamics simulations for a single cluster on a surface a Monte-Carlo based approach has been developed to describe the dynamics of the self-assembly of nanoparticles on a surface. This method accounts for the free particle diffusion on a surface, aggregation into islands and detachment from these islands. The developed method is allowed to study pattern formation of structures up to thousands nm, as well as the stability of these structures. Developed method was implemented in MBN Explorer computer package. 4. The process of the pattern formation on a surface was modeled for several different scenarios. Based on the analysis of results of simulations was suggested a criterion, which can be used to distinguish between different patterns formed on a surface, for example: between fractals or compact islands.This criteria can be used to predict the final morphology of a growing structure. 5. The post-growth evolution of patterns on a surface was also analyzed. In particular, attention in the thesis is payed to a systematical theoretical analysis of the post-growth processes occurring in nanofractals on a surface. The time evolution of fractal morphology in the course of the post-growth relaxation was analyzed, the results of these calculations were compared with experimental data available for the post-growth relaxation of silver cluster fractals on graphite substrate. All the aforementioned problems are discussed in details in the thesis.

- Development of terahertz vacuum electronics for array receivers (2013)
- Heterodyne array receivers are employed in radio astronomy to reduce the observing time needed for mapping extended sources. One of the main factors limiting the amount of pixels in terahertz receivers is the difficulty of generating a sufficient amount of local oscillator power. Another challenge is efficient diplexing and coupling of local oscillator and signal power to the detectors. These problems are attacked in this dissertation by proposing the application of two vacuum electronic terahertz amplifier types for the amplification of the LO-signal and by introducing a new method for finding the defects in a quasioptical diplexer. A traveling wave tube (TWT) design based on a square helix slow wave structure (SWS) at 825 GHz is introduced. It exhibits a simulated small-signal gain of 18.3 dB and a 3-dB bandwidth of 69 GHz. In order to generate LO-power at even higher frequencies, the operation of an 850-GHz square helix TWT as a frequency doubler has been studied. A simulated conversion efficiency of 7% to 1700 GHz, comparable with the state-of-art solid-state doublers, has been achieved for an input power of 25 mW. The other amplifier type discussed in this work is a 1-THz cascade backward wave amplifier based on a double corrugated waveguide SWS. Specifically, three input/output coupler types between a rectangular waveguide and the SWS are presented. The structures have been realized with microfabrication, and the results of loss measurements at 1 THz will be shown. Diplexing of the LO- and signal beams is often performed with a Martin-Puplett interferometer. Misalignment and deformation of the quasioptical components causes the polarization state of the output signal to be incorrect, which leads to coupling losses. A ray-tracing program has been developed for studying the influence of such defects. The measurement results of the diplexer of a multi-pixel terahertz receiver operated at the APEX telescope have been analyzed with the program, and the results are presented. The program allows the quasioptical configuration of the diplexer to be corrected in order to obtain higher receiver sensitivity.

- Studies on the focusing performance of a Gabor lens depending on nonneutral plasma properties (2013)
- The concept of the Gabor lens goes back to an idea by Dennis Gabor, who proposed a magnetron-type trap as an effective diverging lens for electron beams (collecting lens for positive ion beams). Electrons confined inside the lens volume by orthogonal magnetic and electric fields, create an electric space charge field that causes a radial symmetric focusing force on an ion beam passing through the lens volume. Since the beginning of the 1990s, a new design of this lens type as well as numerical models to describe the confined plasma cloud have been developed at the Institute for Applied Physics (IAP, Johann Wolfgang Goethe-University Frankfurt). Thanks to an improved understanding of the plasma confinement as a function of the external fields, two lenses have successfully been tested for low beam currents and remain in operation. In the scope of this work, the performance of a prototype Gabor lens for the transport of intense, i.e. space charge dominated ion beams, was investigated at the High Current Test Injector (HOSTI) of GSI Helmholtzzentrum für Schwerionenforschung GmbH for the first time. To ensure an optimal focusing performance of the Gabor lens a homogeneous and stable electron confinement is required. Therefore, new non-interceptive diagnostic methods were developed to investigate the parameters and state of the confined nonneutral plasma column as a function of the external fields. An essential part of the studies was the time-resolved diagnostic of an occurring plasma instability and the determination of the electron temperature via optical spectroscopy. The latter necessitated the detailed investigation of atomic excitation as well as the measurement of optical-emission cross sections. A comparison of the results from both experiments i.e. the beam transport measurements at GSI and the diagnostic experiments performed at IAP concerning the plasma state, gave first indications of possible interaction processes between the nonneutral plasma and the ion beam.