## Physik

### Refine

#### Document Type

- Doctoral Thesis (30)
- Article (1)

#### Language

- English (31) (remove)

#### Keywords

- ALICE (1)
- Activation (1)
- Correlated systems (1)
- Correlations (1)
- Density functional theory (1)
- Dissertation (1)
- Dynamical mean field theory (1)
- Fluka (1)
- Funktionale Renormierungsgruppe (1)
- Gabor lens (1)

- A kinetic theory for spin waves in yttrium-iron garnet (2013)
- Spin waves in yttrium-iron garnet has been the subject of research for decades. Recently the report of Bose-Einstein condensation at room temperature has brought these experiments back into focus. Due to the small mass of quasiparticles compared to atoms for example, the condensation temperature can be much higher. With spin-wave quasiparticles, so-called magnons, even room temperature can be reached by externally injecting magnons. But also possible applications in information technologies are of interest. Using excitations as carriers for information instead of charges delivers a much more efficient way of processing data. Basic logical operations have already been realized. Finally the wavelength of spin waves which can be decreased to nanoscale, gives the opportunity to further miniaturize devices for receiving signals for example in smartphones. For all of these purposes the magnon system is driven far out of equilibrium. In order to get a better fundamental understanding, we concentrate in the main part of this thesis on the nonequilibrium aspect of magnon experiments and investigate their thermalization process. In this context we develop formalisms which are of general interest and which can be adopted to many different kinds of systems. A milestone in describing gases out of equilibrium was the Boltzmann equation discovered by Ludwig Boltzmann in 1872. In this thesis extensions to the Boltzmann equation with improved approximations are derived. For the application to yttrium-iron garnet we describe the thermalization process after magnons were excited by an external microwave field. First we consider the Bose-Einstein condensation phenomena. A special property of thin films of yttrium-iron garnet is that the dispersion of magnons has its minimum at finite wave vectors which leads to an interesting behavior of the condensate. We investigate the spatial structure of the condensate using the Gross-Pitaevskii equation and find that the magnons can not condensate only at the energy minimum but that also higher Fourier modes have to be occupied macroscopically. In principle this can lead to a localization on a lattice in real space. Next we use functional renormalization group methods to go beyond the perturbation theory expressions in the Boltzmann equation. It is a difficult task to find a suitable cutoff scheme which fits to the constraints of nonequilibrium, namely causality and the fluctuation-dissipation theorem when approaching equilibrium. Therefore the cutoff scheme we developed for bosons in the context of our considerations is of general interest for the functional renormalization group. In certain approximations we obtain a system of differential equations which have a similar transition rate structure to the Boltzmann equation. We consider a model of two kinds of free bosons of which one type of boson acts as a thermal bath to the other one. Taking a suitable initial state we can use our formalism to describe the dynamics of magnons such that an enhanced occupation of the ground state is achieved. Numerical results are in good agreement with experimental data. Finally we extend our model to consider also the pumping process and the decrease of the magnon particle number till thermal equilibrium is reached again. Additional terms which explicitly break the U(1)-symmetry make it necessary to also extend the theory from which a kinetic equation can be deduced. These extensions are complicated and we therefore restrict ourselves to perturbation theory only. Because of the weak interactions in yttrium-iron garnet this provides already good results.

- A numerical renormalization group approach to dissipative quantum impurity systems (2011)
- The miniaturization of electronics is reaching its limits. Structures necessary to build integrated circuits from semiconductors are shrinking and could reach the size of only a few atoms within the next few years. It will be at the latest at this point in time that the physics of nanostructures gains importance in our every day life. This thesis deals with the physics of quantum impurity models. All models of this class exhibit an identical structure: the simple and small impurity only has few degrees of freedom. It can be built out of a small number of atoms or a single molecule, for example. In the simplest case it can be described by a single spin degree of freedom, in many quantum impurity models, it can be treated exactly. The complexity of the description arises from its coupling to a large number of fermionic or bosonic degrees of freedom (large meaning that we have to deal with particle numbers of the order of 10^{23}). An exact treatment thus remains impossible. At the same time, physical effects which arise in quantum impurity systems often cannot be described within a perturbative theory, since multiple energy scales may play an important role. One example for such an effect is the Kondo effect, where the free magnetic moment of the impurity is screened by a "cloud" of fermionic particles of the quantum bath. The Kondo effect is only one example for the rich physics stemming from correlation effects in many body systems. Quantum impurity models, and the oftentimes related Kondo effect, have regained the attention of experimental and theoretical physicists since the advent of quantum dots, which are sometimes also referred to as as artificial atoms. Quantum dots offer a unprecedented control and tunability of many system parameters. Hence, they constitute a nice "playground" for fundamental research, while being promising candidates for building blocks of future technological devices as well. Recently Loss' and DiVincenzo's p roposal of a quantum computing scheme based on spins in quantum dots, increased the efforts of experimentalists to coherently manipulate and read out the spins of quantum dots one by one. In this context two topics are of paramount importance for future quantum information processing: since decoherence times have to be large enough to allow for good error correction schemes, understanding the loss of phase coherence in quantum impurity systems is a prerequisite for quantum computation in these systems. Nonequilibrium phenomena in quantum impurity systems also have to be understood, before one may gain control of manipulating quantum bits. As a first step towards more complicated nonequilibrium situations, the reaction of a system to a quantum quench, i.e. a sudden change of external fields or other parameters of the system can be investigated. We give an introduction to a powerful numerical method used in this field of research, the numerical renormalization group method, and apply this method and its recent enhancements to various quantum impurity systems. The main part of this thesis may be structured in the following way: - Ferromagnetic Kondo Model, - Spin-Dynamics in the Anisotropic Kondo and the Spin-Boson Model, - Two Ising-coupled Spins in a Bosonic Bath, - Decoherence in an Aharanov-Bohm Interferometer.

- Commissioning of the ALICE High-Level Trigger (2012)
- A new era in experimental nuclear physics has begun with the start-up of the Large Hadron Collider at CERN and its dedicated heavy-ion detector system ALICE. Measuring the highest energy density ever produced in nucleus-nucleus collisions, the detector has been designed to study the properties of the created hot and dense medium, assumed to be a Quark-Gluon Plasma. Comprised of 18 high granularity sub-detectors, ALICE delivers data from a few million electronic channels of proton-proton and heavy-ion collisions. The produced data volume can reach up to 26 GByte/s for central Pb–Pb collisions at design luminosity of L = 1027 cm−2 s−1 , challenging not only the data storage, but also the physics analysis. A High-Level Trigger (HLT) has been built and commissioned to reduce that amount of data to a storable value prior to archiving with the means of data filtering and compression without the loss of physics information. Implemented as a large high performance compute cluster, the HLT is able to perform a full reconstruction of all events at the time of data-taking, which allows to trigger, based on the information of a complete event. Rare physics probes, with high transverse momentum, can be identified and selected to enhance the overall physics reach of the experiment. The commissioning of the HLT is at the center of this thesis. Being deeply embedded in the ALICE data path and, therefore, interfacing all other ALICE subsystems, this commissioning imposed not only a major challenge, but also a massive coordination effort, which was completed with the first proton-proton collisions reconstructed by the HLT. Furthermore, this thesis is completed with the study and implementation of on-line high transverse momentum triggers.

- Coulomb dissociation of 31Cl and 32Ar - constraining the rp process (2012)
- The subject of this thesis aimed at a better understanding of the spectacular X-ray burst. The most likely astrophysical site is a very dense neutron star, which accretes H/He-rich matter from a close companion. While falling towards the neutron star, the matter is heated up and a thermonuclear runaway is ignited. The exact description of this process is dominated by the properties of a few proton-rich radioactive isotopes, which have a low interaction probability, hence a high abundance. The topic of this thesis was therefore an investigation of the short-lived, proton-rich isotopes 31Cl and 32Ar. The Coulomb dissociation method is the modern technique of choice. Excitations with energies up to 20 MeV can be induced by the Lorentz contracted Coulomb ﬁeld of a lead target. At the GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt, Germany, a Ar beam was accelerated to an energy of 825 AMeV and fragmented in a beryllium target. The fragment separator was used to select the desired isotopes with a remaining energy of 650 AMeV. They were subsequently directed onto a 208 Pb target in the ALAND/LAND setup. The measurement was performed in inverse kinematics. All reaction products were detected and inclusive and exclusive measurements of the respective Coulomb dissociation cross sections were possible. During the analysis of the experiment, it was possible to extract the energy-diﬀerential excitation spectrum of 31Cl, and to constrain astrophysically important parameters for the time-reversed 30S(p,γ)31Cl reaction. A single resonance at 0.443(37) MeV dominates the stellar reaction rate, which was also deduced and compared to previous calculations. The integrated Coulomb dissociation cross section of this resonance was determined to 15(6) mb. The astrophysically important one- and two-proton emission channels were analyzed for 32Ar and energy-diﬀerential excitation spectra could be derived. The integrated Coulomb dissociation cross section for two proton emission were determined with two diﬀerent techniques. The inclusive measurement yields a cross section of 214(29stat)(20sys) mb, whereas the exclusive reconstruction results in a cross section of 226(14stat)(23sys) mb. Both results are in very good agreement. The Coulomb dissociation cross section for the one-proton emission channel is extracted solely from the exclusive measurement and is 54(8stat)(6sys) mb. Furthermore, the development of the Low Energy Neutron detector Array (LENA) for the upcoming R3B setup is described. The detector will be utilized in charge-exchange reactions to detect the low-energy recoil neutrons from (p,n)-type reactions. These reaction studies are of particular importance in the astrophysical context and can be used to constrain half lifes under stellar conditions. In the frame of this work, prototypes of the detector were built and successfully commissioned in several international laboratories. The analysis was supported by detailed simulations of the detection characteristics.

- Density functional theory and dynamical mean field theory: applications to correlated electron materials (2012)
- The study of systems whose properties are governed by electronic correlations is a corner stone of modern solid-state physics. Often, such systems feature unique and distinct properties like Mott metal-insulator transitions, rich phase diagrams, and high sensitivity to subtle changes in the applied conditions. Whereas the standard approach to electronic structure calculations, density functional theory (DFT), is able to address the complexity of real-world materials but is known to have serious limitations in the description of correlations, the dynamical mean-field theory (DMFT) has become an established method for the treatment of correlated fermions, first on the level of minimal models and later in combination with DFT, termed LDA+DMFT. This thesis presents theoretical calculations on different materials exhibiting correlated physics, where we aim at covering a range in terms of systems --from rather weakly correlated to strongy correlated-- as well as in terms of methods, from DFT calculations to combined LDA+DMFT calculations. We begin with a study on a selection of iron pnictides, a recently discovered family of high-temperature superconductors with varying degree of correlation strength, and show that their magnetic and optical properties can be assessed to some degree within DFT, despite the correlated nature of these systems. Next, extending our analysis to the inclusion of correlations in the framework of LDA+DMFT, we discuss the electronic structure of the iron pnictide LiFeAs which we find to be well described by Fermi liquid theory with regard to many of its properties, yet we see distinct changes in its Fermi surface upon inclusion of correlations. We continue the study of low-energy properties and specifically Fermi surfaces on two more iron pnictides, LaFePO and LiFeP, and predict a topology change of their Fermi surfaces due to the effect of correlations, with possible implications for their superconducting properties. In our last study, we close the circle by presenting LDA+DMFT calculations on an organic molecular crystal on the verge of a Mott metal-insulator transition; there, we find the spectral and optical properties to display signatures of strong electronic correlations beyond Fermi liquid theory.

- Development of terahertz vacuum electronics for array receivers (2013)
- Heterodyne array receivers are employed in radio astronomy to reduce the observing time needed for mapping extended sources. One of the main factors limiting the amount of pixels in terahertz receivers is the difficulty of generating a sufficient amount of local oscillator power. Another challenge is efficient diplexing and coupling of local oscillator and signal power to the detectors. These problems are attacked in this dissertation by proposing the application of two vacuum electronic terahertz amplifier types for the amplification of the LO-signal and by introducing a new method for finding the defects in a quasioptical diplexer. A traveling wave tube (TWT) design based on a square helix slow wave structure (SWS) at 825 GHz is introduced. It exhibits a simulated small-signal gain of 18.3 dB and a 3-dB bandwidth of 69 GHz. In order to generate LO-power at even higher frequencies, the operation of an 850-GHz square helix TWT as a frequency doubler has been studied. A simulated conversion efficiency of 7% to 1700 GHz, comparable with the state-of-art solid-state doublers, has been achieved for an input power of 25 mW. The other amplifier type discussed in this work is a 1-THz cascade backward wave amplifier based on a double corrugated waveguide SWS. Specifically, three input/output coupler types between a rectangular waveguide and the SWS are presented. The structures have been realized with microfabrication, and the results of loss measurements at 1 THz will be shown. Diplexing of the LO- and signal beams is often performed with a Martin-Puplett interferometer. Misalignment and deformation of the quasioptical components causes the polarization state of the output signal to be incorrect, which leads to coupling losses. A ray-tracing program has been developed for studying the influence of such defects. The measurement results of the diplexer of a multi-pixel terahertz receiver operated at the APEX telescope have been analyzed with the program, and the results are presented. The program allows the quasioptical configuration of the diplexer to be corrected in order to obtain higher receiver sensitivity.

- Dynamical effects and disorder in ultracold bosonic matter (2012)
- In this thesis, various aspects on the theoretical description of ultracold bosonic atoms in optical lattices are investigated. After giving a brief introduction to the fundamental concepts of BECs, atomic physics, interatomic interactions and experimental procedures in chapter (1), we derive the Bose-Hubbard model from first principles in chapter (2). In this chapter, we also introduce and discuss a technique to efficiently determine Wannier states, which, in contrast to current techniques, can also be extended to inhomogeneous systems. This technique is later extended to higher dimensional, non-separable lattices in chapter (5). The many-body physics and phases of the Bose-Hubbard is shortly presented in chapter (3) in conjunction with Gutzwiller mean-field theory, and the recently devised projection operator approach. We then return to the derivation of an improved microscopic many-body Hamiltonian, which contains higher band contributions in the presence of interactions in chapter (4). We then move on to many-particle theory. To demonstrate the conceptual relations required in the following chapter, we derive Bogoliubov theory in chapter (5.3.4) in three different ways and discuss the connections. Furthermore, this derivation goes beyond the usual version discussed in most textbooks and papers, as it accounts for the fact, that the quasi-particle Hamiltonian is not diagonalizable in the condensate and the eigenvectors have to be completed by additional vectors to form a basis. This leads to a qualitatively different quasi-particle Hamiltonian and more intricate transformation relations as a result. In the following two chapters (7, 8), we derive an extended quasi-particle theory, which goes beyond Bogoliubov theory and is not restricted to weak interactions or a large condensate fraction. This quasi-particle theory naturally contains additional modes, such as the amplitude mode in the strongly interacting condensate. Bragg spectroscopy, a momentum-resolved spectroscopic technique, is introduced and used for the first experimental detection of the amplitude mode at finite quasi-momentum in chapter (9). The closely related lattice modulation spectroscopy is discussed in chapter (10). The results of a time-dependent simulation agree with experimental data, suggesting that also the amplitude mode, and not the sound mode, was probed in these experiments. In chapter (11) the dynamics of strongly interacting bosons far from equilibrium in inhomogeneous potentials is explored. We introduce a procedure that, in conjunction with the collapse and revival of the condensate, can be used to create exotic condensates, while particularly focusing on the case of a quadratic trapping potential. Finally, in chapter (12), we turn towards the physics of disordered systems derive and discuss in detail the stochastic mean-field theory for the disordered Bose-Hubbard model.