## Physik

### Refine

#### Document Type

- Doctoral Thesis (37)
- Article (1)

#### Language

- English (38) (remove)

#### Keywords

- ALICE (1)
- Activation (1)
- Beschleuniger (1)
- CBM (1)
- Correlated systems (1)
- Correlations (1)
- Density functional theory (1)
- Dissertation (1)
- Dynamical mean field theory (1)
- Fluka (1)

- A kinetic theory for spin waves in yttrium-iron garnet (2013)
- Spin waves in yttrium-iron garnet has been the subject of research for decades. Recently the report of Bose-Einstein condensation at room temperature has brought these experiments back into focus. Due to the small mass of quasiparticles compared to atoms for example, the condensation temperature can be much higher. With spin-wave quasiparticles, so-called magnons, even room temperature can be reached by externally injecting magnons. But also possible applications in information technologies are of interest. Using excitations as carriers for information instead of charges delivers a much more efficient way of processing data. Basic logical operations have already been realized. Finally the wavelength of spin waves which can be decreased to nanoscale, gives the opportunity to further miniaturize devices for receiving signals for example in smartphones. For all of these purposes the magnon system is driven far out of equilibrium. In order to get a better fundamental understanding, we concentrate in the main part of this thesis on the nonequilibrium aspect of magnon experiments and investigate their thermalization process. In this context we develop formalisms which are of general interest and which can be adopted to many different kinds of systems. A milestone in describing gases out of equilibrium was the Boltzmann equation discovered by Ludwig Boltzmann in 1872. In this thesis extensions to the Boltzmann equation with improved approximations are derived. For the application to yttrium-iron garnet we describe the thermalization process after magnons were excited by an external microwave field. First we consider the Bose-Einstein condensation phenomena. A special property of thin films of yttrium-iron garnet is that the dispersion of magnons has its minimum at finite wave vectors which leads to an interesting behavior of the condensate. We investigate the spatial structure of the condensate using the Gross-Pitaevskii equation and find that the magnons can not condensate only at the energy minimum but that also higher Fourier modes have to be occupied macroscopically. In principle this can lead to a localization on a lattice in real space. Next we use functional renormalization group methods to go beyond the perturbation theory expressions in the Boltzmann equation. It is a difficult task to find a suitable cutoff scheme which fits to the constraints of nonequilibrium, namely causality and the fluctuation-dissipation theorem when approaching equilibrium. Therefore the cutoff scheme we developed for bosons in the context of our considerations is of general interest for the functional renormalization group. In certain approximations we obtain a system of differential equations which have a similar transition rate structure to the Boltzmann equation. We consider a model of two kinds of free bosons of which one type of boson acts as a thermal bath to the other one. Taking a suitable initial state we can use our formalism to describe the dynamics of magnons such that an enhanced occupation of the ground state is achieved. Numerical results are in good agreement with experimental data. Finally we extend our model to consider also the pumping process and the decrease of the magnon particle number till thermal equilibrium is reached again. Additional terms which explicitly break the U(1)-symmetry make it necessary to also extend the theory from which a kinetic equation can be deduced. These extensions are complicated and we therefore restrict ourselves to perturbation theory only. Because of the weak interactions in yttrium-iron garnet this provides already good results.

- Shedding light on reaction mechanisms : structure determination of reactive intermediates and investigation of protein structural dynamics using 2D-IR spectroscopy (2012)
- Detailed knowledge of reaction mechanisms is key to understanding chemical, biological, and biophysical processes. For many reasons, it is desirable to comprehend how a reaction proceeds and what influences the reaction rate and its products. In biophysics, reaction mechanisms provide insight into enzyme and protein function, the reason why they are so efficient, and what determines their reaction rates. They also reveal the relationship between the function of a protein and its structure and dynamics. In chemistry, reaction mechanisms are able to explain side products, solvent effects, and the stereochemistry of a product. They are also the basis for potentially optimizing reactions with respect to yield, enhancing the stereoselectivity, or for modifying reactions in order to obtain other related products. A key step to investigate reaction mechanisms is the identification and characterization of intermediates, which may be reactive, short-lived, and therefore only weakly populated. Nowadays, the structures of those can in most cases only be hypothesized based on products, side products, and isolable intermediates, because intermediates with a life time of less than a few microseconds are not accessible with the commonly used techniques for structure determination such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. In this thesis, two-dimensional infrared (2D-IR) spectroscopy is shown to be a powerful complement to the existing techniques for structure determination in solution. 2D-IR spectroscopy uses a femtosecond laser setup to investigate interactions between vibrations - analogous to 2D-NMR, which investigates the interactions between spins. Its ultrafast time resolution makes 2D-IR spectroscopy particularly well suited for the two topics investigated in this thesis: Structure Determination of Reactive Intermediates and Conformational Dynamics of Proteins. Structure Determination of Reactive Intermediates: The focus of this thesis is using polarization-dependent 2D-IR (P2D-IR) spectroscopy for structure determination of N-crotonyloxazolidinone (referred to as 1), a small organic compound with a chiral oxazolidinone, known as Evans auxiliary, and its reactive complexes with the Lewis acids SnCl4 and Mg(ClO4)2. Chiral oxazolidinones in combination with Lewis acids have frequently been used in stereoselective synthesis for over 30 years. Nevertheless, the detailed mechanisms are in many cases xvi ABSTRACT still mere hypotheses and have not yet been experimentally proven. By accurately measuring the angles between the transition dipole moments in the molecules using an optimized P2D-IR setup and comparing the results to DFT calculations, the conformation of 1 and the conformation and coordination of the main complexes with SnCl4 and Mg(ClO4)2 are unequivocally identified and analyzed in depth. Structural details, such as a slight twist in the solution structure of 1, are detected using P2D-IR spectroscopy; these cannot be inferred from NMR spectroscopy or DFT calculations. In addition to the main Lewis acid complexes, complexes in low concentration are detected and tentatively assigned to different conformations and complexation geometries. The knowledge of those structures is essential for rationalizing the observed stereoselectivities. Additionally, a method is introduced that enables structure determination of molecules in complex mixtures and even in the presence of molecules with similar spectral properties and in high concentration. This work sets the stage for future studies of other substrate-catalyst complexes and reaction intermediates for which the structure determination has not been possible to date. Conformational Dynamics of Proteins: Exchange 2D-IR spectroscopy allows the investigation of fast dynamics without disturbing the equilibrium of the exchanging species. It is therefore well suited to investigate fast dynamics of proteins and to reveal the speed limit of those. The temperature dependence of the conformational dynamics between the myoglobin substates A1 and A3 in equilibrium is analyzed. The various substates of myoglobin can be detected with FTIR spectroscopy, if carbon monoxide is bound to the heme. From previous studies it is known that the exchange rates at room temperature are in the picosecond time range, well suited to be investigated by 2D-IR spectroscopy. In the temperature range between 0 °C and 40 °C only a weak temperature dependence of the exchange rate in the myoglobin mutant L29I is observed in the present study. The exchange rate approximately doubles from 15 ns-1 at 0 °C to 31 ns-1 at 40 °C. It turned out that the conformational dynamics correlates linearly with the solvent viscosity, which itself is temperature dependent. Comparing our results to measurements at cryogenic temperatures, the linear relation between exchange time constant for this process and the viscosity is shown for the temperature range between -100 °C and 40 °C (corresponding to a viscosity change of 14 orders of magnitude). Thus, it is proven that the dynamics of the conformational switching are mainly determined by solvent dynamics, i.e., the protein dynamics are slaved to the solvent dynamics. This is the first time slaving is observed for such fast processes (in the picosecond time range). The observation implies a long-range structural rearrangement between the myoglobin substates A1 and A3. In addition, the exchange for other mutants and wild type myoglobin is analyzed qualitatively and found to agree with the conclusions drawn from L29I myoglobin.

- Dynamical effects and disorder in ultracold bosonic matter (2012)
- In this thesis, various aspects on the theoretical description of ultracold bosonic atoms in optical lattices are investigated. After giving a brief introduction to the fundamental concepts of BECs, atomic physics, interatomic interactions and experimental procedures in chapter (1), we derive the Bose-Hubbard model from first principles in chapter (2). In this chapter, we also introduce and discuss a technique to efficiently determine Wannier states, which, in contrast to current techniques, can also be extended to inhomogeneous systems. This technique is later extended to higher dimensional, non-separable lattices in chapter (5). The many-body physics and phases of the Bose-Hubbard is shortly presented in chapter (3) in conjunction with Gutzwiller mean-field theory, and the recently devised projection operator approach. We then return to the derivation of an improved microscopic many-body Hamiltonian, which contains higher band contributions in the presence of interactions in chapter (4). We then move on to many-particle theory. To demonstrate the conceptual relations required in the following chapter, we derive Bogoliubov theory in chapter (5.3.4) in three different ways and discuss the connections. Furthermore, this derivation goes beyond the usual version discussed in most textbooks and papers, as it accounts for the fact, that the quasi-particle Hamiltonian is not diagonalizable in the condensate and the eigenvectors have to be completed by additional vectors to form a basis. This leads to a qualitatively different quasi-particle Hamiltonian and more intricate transformation relations as a result. In the following two chapters (7, 8), we derive an extended quasi-particle theory, which goes beyond Bogoliubov theory and is not restricted to weak interactions or a large condensate fraction. This quasi-particle theory naturally contains additional modes, such as the amplitude mode in the strongly interacting condensate. Bragg spectroscopy, a momentum-resolved spectroscopic technique, is introduced and used for the first experimental detection of the amplitude mode at finite quasi-momentum in chapter (9). The closely related lattice modulation spectroscopy is discussed in chapter (10). The results of a time-dependent simulation agree with experimental data, suggesting that also the amplitude mode, and not the sound mode, was probed in these experiments. In chapter (11) the dynamics of strongly interacting bosons far from equilibrium in inhomogeneous potentials is explored. We introduce a procedure that, in conjunction with the collapse and revival of the condensate, can be used to create exotic condensates, while particularly focusing on the case of a quadratic trapping potential. Finally, in chapter (12), we turn towards the physics of disordered systems derive and discuss in detail the stochastic mean-field theory for the disordered Bose-Hubbard model.

- Density functional theory and dynamical mean field theory: applications to correlated electron materials (2012)
- The study of systems whose properties are governed by electronic correlations is a corner stone of modern solid-state physics. Often, such systems feature unique and distinct properties like Mott metal-insulator transitions, rich phase diagrams, and high sensitivity to subtle changes in the applied conditions. Whereas the standard approach to electronic structure calculations, density functional theory (DFT), is able to address the complexity of real-world materials but is known to have serious limitations in the description of correlations, the dynamical mean-field theory (DMFT) has become an established method for the treatment of correlated fermions, first on the level of minimal models and later in combination with DFT, termed LDA+DMFT. This thesis presents theoretical calculations on different materials exhibiting correlated physics, where we aim at covering a range in terms of systems --from rather weakly correlated to strongy correlated-- as well as in terms of methods, from DFT calculations to combined LDA+DMFT calculations. We begin with a study on a selection of iron pnictides, a recently discovered family of high-temperature superconductors with varying degree of correlation strength, and show that their magnetic and optical properties can be assessed to some degree within DFT, despite the correlated nature of these systems. Next, extending our analysis to the inclusion of correlations in the framework of LDA+DMFT, we discuss the electronic structure of the iron pnictide LiFeAs which we find to be well described by Fermi liquid theory with regard to many of its properties, yet we see distinct changes in its Fermi surface upon inclusion of correlations. We continue the study of low-energy properties and specifically Fermi surfaces on two more iron pnictides, LaFePO and LiFeP, and predict a topology change of their Fermi surfaces due to the effect of correlations, with possible implications for their superconducting properties. In our last study, we close the circle by presenting LDA+DMFT calculations on an organic molecular crystal on the verge of a Mott metal-insulator transition; there, we find the spectral and optical properties to display signatures of strong electronic correlations beyond Fermi liquid theory.

- Verification of Monte Carlo transport codes by activation experiments (2012)
- With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum für Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.

- Commissioning of the ALICE High-Level Trigger (2012)
- A new era in experimental nuclear physics has begun with the start-up of the Large Hadron Collider at CERN and its dedicated heavy-ion detector system ALICE. Measuring the highest energy density ever produced in nucleus-nucleus collisions, the detector has been designed to study the properties of the created hot and dense medium, assumed to be a Quark-Gluon Plasma. Comprised of 18 high granularity sub-detectors, ALICE delivers data from a few million electronic channels of proton-proton and heavy-ion collisions. The produced data volume can reach up to 26 GByte/s for central Pb–Pb collisions at design luminosity of L = 1027 cm−2 s−1 , challenging not only the data storage, but also the physics analysis. A High-Level Trigger (HLT) has been built and commissioned to reduce that amount of data to a storable value prior to archiving with the means of data filtering and compression without the loss of physics information. Implemented as a large high performance compute cluster, the HLT is able to perform a full reconstruction of all events at the time of data-taking, which allows to trigger, based on the information of a complete event. Rare physics probes, with high transverse momentum, can be identified and selected to enhance the overall physics reach of the experiment. The commissioning of the HLT is at the center of this thesis. Being deeply embedded in the ALICE data path and, therefore, interfacing all other ALICE subsystems, this commissioning imposed not only a major challenge, but also a massive coordination effort, which was completed with the first proton-proton collisions reconstructed by the HLT. Furthermore, this thesis is completed with the study and implementation of on-line high transverse momentum triggers.