## Physik

### Refine

#### Year of publication

#### Document Type

- Preprint (7)
- Article (4)
- Doctoral Thesis (1)

#### Keywords

- quark-gluon plasma (12) (remove)

#### Institute

- Jet propagation and mach-cone formation in (3+1)-dimensional ideal hydrodynamics (2009)
- This thesis investigates the jet-medium interactions in a Quark-Gluon Plasma using a hydrodynamical model. Such a Quark-Gluon Plasma represents a very early stage of our universe and is assumed to be created in heavy-ion collisions. Its properties are subject of current research. Since the comparison of measured data to model calculations suggests that the Quark-Gluon Plasma behaves like a nearly perfect liquid, the medium created in a heavy-ion collision can be described applying hydrodynamical simulations. One of the crucial questions in this context is if highly energetic particles (so-called jets), which are produced at the beginning of the collision and traverse the formed medium, may lead to the creation of a Mach cone. Such a Mach cone is always expected to develop if a jet moves with a velocity larger than the speed of sound relative to the medium. In that case, the measured angular particle distributions are supposed to exhibit a characteristic structure allowing for direct conclusions about the Equation of State and in particular about the speed of sound of the medium. Several different scenarios of jet energy loss are examined (the exact form of which is not known from first principles) and different mechanisms of energy and momentum loss are analyzed, ranging from weak interactions (based on calculations from perturbative Quantum Chromodynamics, pQCD) to strong interactions (formulated using the Anti-de-Sitter/Conformal Field Theory Correspondence, AdS/CFT). Though they result in different angular particle correlations which could in principle allow to distinguish the underlying processes (if it becomes possible to analyze single-jet events), it is shown that the characteristic structure observed in experimental data can be obtained due to the different contributions of several possible jet trajectories through an expanding medium. Such a structure cannot directly be connected to the Equation of State. In this context, the impact of a strong flow created behind the jet is examined which is common to almost all jet deposition scenarios. Besides that, the transport equations for dissipative hydrodynamics are discussed which are fundamental for any numerical computation of viscous effects in a Quark-Gluon Plasma.

- DD correlations as a sensitive probe for thermalization in high-energy nuclear collisions (2006)
- We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.

- Monte Carlo model for multiparticle production at ultrarelativistic energies (1994)
- The Monte Carlo parton string model for multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies is described. An adequate choice of the parameters in the model gives the possibility of recovering the main results of the dual parton model, with the advantage of treating both hadron and nuclear interactions on the same footing, reducing them to interactions between partons. Also the possibility of considering both soft and hard parton interactions is introduced.

- Hadron production from a hadronizing quark gluon plasma (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source versus a time-dependent, non-equilibrium hadronization off a quark gluon plasma droplet. Due to the time-dependent particle evaporation off the hadronic surface in the latter approach the hadron ratios change (by factors of / 5) in time. The overall particle yields then reflect time averages over the actual thermodynamic properties of the system at a certain stage of evolution.

- Phase transition of a finite quark-gluon plasma (1997)
- The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.

- Chemical freezeout in relativistic A+A collisions: is it close to the QGP? (1997)
- Preliminary experimental data for particle number ratios in the collisions of Au+Au at the BNL AGS (11A GeV/c) and Pb+Pb at the CERN SPS (160A GeV/c) are analyzed in a thermodynamically consistent hadron gas model with excluded volume. Large values of temperature, T = 140 185 MeV, and baryonic chemical potential, µb = 590 270 MeV, close to the boundary of the quark-gluon plasma phase are found from fitting the data. This seems to indicate that the energy density at the chemical freezeout is tremendous which would be indeed the case for the point-like hadrons. However, a self-consistent treatment of the van der Waals excluded volume reveals much smaller energy densities which are very far below a lowest limit estimate of the quark-gluon plasma energy density. PACS number(s): 25.75.-q, 24.10.Pa

- Nuclear shadowing effects on prompt photons at RHIC and LHC (1998)
- The transverse momentum distribution of prompt photons coming from the very early phase of ultrarelativistic heavy ion collisions for the RHIC and LHC energies is calculated by means of perturbative QCD. We calculate the single photon cross section (A + B -> gamma + X) by taking into account the partonic sub processes q + q -> gamma + g and q + g -> gamma + q as well as the Bremsstrahlung corrections to those processes. We choose a lower momentum cut-off k0 = 2 GeV separating the soft physics from perturbative QCD. We compare the results for those primary collisions with the photons produced in reactions of the thermalized secondary particles, which are calculated within scaling hydrodynamics. The QCD processes are taken in leading order. Nuclear shadowing corrections, which alter the involved nuclear structure functions are explicitly taken into account and compared to unshadowed results. Employing the GRV parton distribution parametrizations we find that at RHIC prompt QCD-photons dominate over the thermal radiation down to transverse momenta kT ≈ 2 GeV. At LHC, however, thermal radiation from the QGP dominates for photon transverse momenta kT ≤ 5 GeV, if nuclear shadowing effects on prompt photon production are taken into account.

- The directed flow maximum near c(s) = 0 (2000)
- We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNLAGS and for the Ekin Lab = 40A GeV Pb+Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, Ekin Lab C 10A GeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, Ekin Lab C 40A GeV. We show the e ect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at Ekin Lab = 40A GeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy.

- Partonic scattering cross sections in the QCD medium (2001)
- A medium modified gluon propagator is used to evaluate the scattering cross section for the process gg - gg in the QCD medium by performing an ex- plicit sum over the polarizations of the gluons. We incorporate a magnetic sreening mass from a non - perturbative study. It is shown that the medium modified cross section is finite, divergence free, and is independent of any ad-hoc momentum transfer cut-off parameters. The medium modified finite cross sections are necessary for a realistic investigation of the production and equilibration of the minijet plasma expected at RHIC and LHC PACS: 12.38.Mh; 14.70.Dj; 12.38.Bx; 11.10.Wx

- Baryon stopping and strange baryon and anti-baryon production at ultrarelativistic energies (2002)
- The amount of proton stopping in central Pb+Pb collisions from 20–160 A GeV as well as hyperon and antihyperon rapidity distributions are calculated within the UrQMD model in comparison to experimental data at 40, 80, and 160 A GeV taken recently from the NA49 collaboration. Furthermore, the amount of baryon stopping at 160A GeV for Pb+Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central collisions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80, and 160 A GeV are underestimated by up to factors of 3—depending on the annihilation cross section employed—which might be addressed to missing multimeson fusion channels in the UrQMD model. Pacs-Nr.: 25.75.2q, 24.10.Jv, 24.10.Lx