## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Language

- English (75) (remove)

#### Keywords

- Lambda-Kalkül (18)
- Formale Semantik (8)
- Programmiersprache (7)
- Nebenläufigkeit (6)
- Operationale Semantik (4)
- Verifikation (4)
- lambda calculus (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)

- 1
- Unification of stratified second-order terms (1994)
- We consider the problem of unifying a set of equations between second-order terms. Terms are constructed from function symbols, constant symbols and variables, and furthermore using monadic second-order variables that may stand for a term with one hole, and parametric terms. We consider stratified systems, where for every first-order and second-order variable, the string of second-order variables on the path from the root of a term to every occurrence of this variable is always the same. It is shown that unification of stratified second-order terms is decidable by describing a nondeterministic decision algorithm that eventually uses Makanin's algorithm for deciding the unifiability of word equations. As a generalization, we show that the method can be used as a unification procedure for non-stratified second-order systems, and describe conditions for termination in the general case.

- 18
- Towards sharing in lazy computation systems (2004)
- Work on proving congruence of bisimulation in functional programming languages often refers to [How89,How96], where Howe gave a highly general account on this topic in terms of so-called lazy computation systems . Particularly in implementations of lazy functional languages, sharing plays an eminent role. In this paper we will show how the original work of Howe can be extended to cope with sharing. Moreover, we will demonstrate the application of our approach to the call-by-need lambda-calculus lambda-ND which provides an erratic non-deterministic operator pick and a non-recursive let. A definition of a bisimulation is given, which has to be based on a further calculus named lambda-~, since the na1ve bisimulation definition is useless. The main result is that this bisimulation is a congruence and contained in the contextual equivalence. This might be a step towards defining useful bisimulation relations and proving them to be congruences in calculi that extend the lambda-ND-calculus.

- 41
- Towards correctness of program transformations through unification and critical pair computation (2010)

- 41 [v.2]
- Towards correctness of program transformations through unification and critical pair computation (2011)
- Correctness of program transformations in extended lambda calculi with a contextual semantics is usually based on reasoning about the operational semantics which is a rewrite semantics. A successful approach to proving correctness is the combination of a context lemma with the computation of overlaps between program transformations and the reduction rules, and then of so-called complete sets of diagrams. The method is similar to the computation of critical pairs for the completion of term rewriting systems.We explore cases where the computation of these overlaps can be done in a first order way by variants of critical pair computation that use unification algorithms. As a case study we apply the method to a lambda calculus with recursive let-expressions and describe an effective unification algorithm to determine all overlaps of a set of transformations with all reduction rules. The unification algorithm employs many-sorted terms, the equational theory of left-commutativity modelling multi-sets, context variables of different kinds and a mechanism for compactly representing binding chains in recursive let-expressions.

- 10
- Tinte: developing a prototype for typesetting music in Clean : a case study (1997)
- This paper describes the development of a typesetting program for music in the lazy functional programming language Clean. The system transforms a description of the music to be typeset in a dvi-file just like TEX does with mathematical formulae. The implementation makes heavy use of higher order functions. It has been implemented in just a few weeks and is able to typeset quite impressive examples. The system is easy to maintain and can be extended to typeset arbitrary complicated musical constructs. The paper can be considered as a status report of the implementation as well as a reference manual for the resulting system.

- 6
- Termination proofs for a lazy functional language by abstract reduction : (draft) (1996)
- Automatic termination proofs of functional programming languages are an often challenged problem Most work in this area is done on strict languages Orderings for arguments of recursive calls are generated In lazily evaluated languages arguments for functions are not necessarily evaluated to a normal form It is not a trivial task to de ne orderings on expressions that are not in normal form or that do not even have a normal form We propose a method based on an abstract reduction process that reduces up to the point when su cient ordering relations can be found The proposed method is able to nd termination proofs for lazily evaluated programs that involve non terminating subexpressions Analysis is performed on a higher order polymorphic typed language and termi nation of higher order functions can be proved too The calculus can be used to derive information on a wide range on di erent notions of termination.

- 49
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2012)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 49 [v.2]
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2013)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 40
- Simulation in the call-by-need lambda-calculus with letrec (2010)
- This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.