## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

- 48
- An abstract machine for concurrent Haskell with futures (2012)
- We show how Sestoft’s abstract machine for lazy evaluation of purely functional programs can be extended to evaluate expressions of the calculus CHF – a process calculus that models Concurrent Haskell extended by imperative and implicit futures. The abstract machine is modularly constructed by first adding monadic IO-actions to the machine and then in a second step we add concurrency. Our main result is that the abstract machine coincides with the original operational semantics of CHF, w.r.t. may- and should-convergence.

- 47
- On conservativity of concurrent Haskell (2011)
- The calculus CHF models Concurrent Haskell extended by concurrent, implicit futures. It is a process calculus with concurrent threads, monadic concurrent evaluation, and includes a pure functional lambda-calculus which comprises data constructors, case-expressions, letrec-expressions, and Haskell’s seq. Futures can be implemented in Concurrent Haskell using the primitive unsafeInterleaveIO, which is available in most implementations of Haskell. Our main result is conservativity of CHF, that is, all equivalences of pure functional expressions are also valid in CHF. This implies that compiler optimizations and transformations from pure Haskell remain valid in Concurrent Haskell even if it is extended by futures. We also show that this is no longer valid if Concurrent Haskell is extended by the arbitrary use of unsafeInterleaveIO.

- 47 [v.2]
- On conservativity of concurrent Haskell (2012)
- The calculus CHF models Concurrent Haskell extended by concurrent, implicit futures. It is a process calculus with concurrent threads, monadic concurrent evaluation, and includes a pure functional lambda-calculus which comprises data constructors, case-expressions, letrec-expressions, and Haskell’s seq. Futures can be implemented in Concurrent Haskell using the primitive unsafeInterleaveIO, which is available in most implementations of Haskell. Our main result is conservativity of CHF, that is, all equivalences of pure functional expressions are also valid in CHF. This implies that compiler optimizations and transformations from pure Haskell remain valid in Concurrent Haskell even if it is extended by futures. We also show that this is no longer valid if Concurrent Haskell is extended by the arbitrary use of unsafeInterleaveIO.

- 39
- Reconstruction of a logic for inductive proofs of properties of functional programs (2010)
- The interactive verification system VeriFun is based on a polymorphic call-by-value functional language and on a first-order logic with initial model semantics w.r.t. constructors. This paper provides a reconstruction of the corresponding logic when partial functions are permitted. Typing is polymorphic for the definition of functions but monomorphic for terms in formulas. Equality of terms is defined as contextual equivalence based on observing termination in all contexts. The reconstruction also allows several generalizations of the functional language like mutual recursive functions and abstractions in the data values. The main results are: Correctness of several program transformations for all extensions of a program, which have a potential usage in a deduction system. We also proved that universally quantified equations are conservative, i.e. if a universally quantified equation is valid w.r.t. a program P, then it remains valid if the program is extended by new functions and/or new data types.

- 39 [v.2]
- Reconstruction of a logic for inductive proofs of properties of functional programs (2010)
- The interactive verification system VeriFun is based on a polymorphic call-by-value functional language and on a first-order logic with initial model semantics w.r.t. constructors. It is designed to perform automatic induction proofs and can also deal with partial functions. This paper provides a reconstruction of the corresponding logic and semantics using the standard treatment of undefinedness which adapts and improves the VeriFun-logic by allowing reasoning on nonterminating expressions and functions. Equality of expressions is defined as contextual equivalence based on observing termination in all closing contexts. The reconstruction shows that several restrictions of the VeriFun framework can easily be removed, by natural generalizations: mutual recursive functions, abstractions in the data values, and formulas with arbitrary quantifier prefix can be formulated. The main results of this paper are: an extended set of deduction rules usable in VeriFun under the adapted semantics is proved to be correct, i.e. they respect the observational equivalence in all extensions of a program. We also show that certain classes of theorems are conservative under extensions, like universally quantified equations. Also other special classes of theorems are analyzed for conservativity.

- 38
- Counterexamples to simulation in non-deterministic call-by-need lambda-calculi with letrec (2009)
- This note shows that in non-deterministic extended lambda calculi with letrec, the tool of applicative (bi)simulation is in general not usable for contextual equivalence, by giving a counterexample adapted from data flow analysis. It also shown that there is a flaw in a lemma and a theorem concerning finite simulation in a conference paper by the first two authors.

- 35
- Closures of may and must convergence for contextual equivalence (2008)
- We show on an abstract level that contextual equivalence in non-deterministic program calculi defined by may- and must-convergence is maximal in the following sense. Using also all the test predicates generated by the Boolean, forall- and existential closure of may- and must-convergence does not change the contextual equivalence. The situation is different if may- and total must-convergence is used, where an expression totally must-converges if all reductions are finite and terminate with a value: There is an infinite sequence of test-predicates generated by the Boolean, forall- and existential closure of may- and total must-convergence, which also leads to an infinite sequence of different contextual equalities.