## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

- 30
- Program transformation for functional circuit descriptions (2007)
- We model sequential synchronous circuits on the logical level by signal-processing programs in an extended lambda calculus Lpor with letrec, constructors, case and parallel or (por) employing contextual equivalence. The model describes gates as (parallel) boolean operators, memory using a delay, which in turn is modeled as a shift of the list of signals, and permits also constructive cycles due to the parallel or. It opens the possibility of a large set of program transformations that correctly transform the expressions and thus the represented circuits and provides basic tools for equivalence testing and optimizing circuits. A further application is the correct manipulation by transformations of software components combined with circuits. The main part of our work are proof methods for correct transformations of expressions in the lambda calculus Lpor, and to propose the appropriate program transformations.

- 27
- On generic context lemmas for lambda calculi with sharing (2007)
- This paper proves several generic variants of context lemmas and thus contributes to improving the tools to develop observational semantics that is based on a reduction semantics for a language. The context lemmas are provided for may- as well as two variants of mustconvergence and a wide class of extended lambda calculi, which satisfy certain abstract conditions. The calculi must have a form of node sharing, e.g. plain beta reduction is not permitted. There are two variants, weakly sharing calculi, where the beta-reduction is only permitted for arguments that are variables, and strongly sharing calculi, which roughly correspond to call-by-need calculi, where beta-reduction is completely replaced by a sharing variant. The calculi must obey three abstract assumptions, which are in general easily recognizable given the syntax and the reduction rules. The generic context lemmas have as instances several context lemmas already proved in the literature for specific lambda calculi with sharing. The scope of the generic context lemmas comprises not only call-by-need calculi, but also call-by-value calculi with a form of built-in sharing. Investigations in other, new variants of extended lambda-calculi with sharing, where the language or the reduction rules and/or strategy varies, will be simplified by our result, since specific context lemmas are immediately derivable from the generic context lemma, provided our abstract conditions are met.