## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Document Type

- Working Paper (75)
- Periodical Parts (1)

#### Keywords

- Lambda-Kalkül (18)
- Formale Semantik (8)
- Programmiersprache (7)
- Nebenläufigkeit (6)
- Operationale Semantik (4)
- Verifikation (4)
- lambda calculus (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)

#### Institute

- Informatik (75)
- Präsidium (1)

- 33
- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reﬂection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension.

- 33 [v.2]
- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- 33 [v.3]
- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- 33 [v.4]
- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- 33 [v.5]
- Adequacy of compositional translations for observational semantics (2009)
- We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- 32
- A finite simulation method in a non-deterministic call-by-need calculus with letrec, constructors and case (2008)
- The paper proposes a variation of simulation for checking and proving contextual equivalence in a non-deterministic call-by-need lambda-calculus with constructors, case, seq, and a letrec with cyclic dependencies. It also proposes a novel method to prove its correctness. The calculus' semantics is based on a small-step rewrite semantics and on may-convergence. The cyclic nature of letrec bindings, as well as non-determinism, makes known approaches to prove that simulation implies contextual equivalence, such as Howe's proof technique, inapplicable in this setting. The basic technique for the simulation as well as the correctness proof is called pre-evaluation, which computes a set of answers for every closed expression. If simulation succeeds in finite computation depth, then it is guaranteed to show contextual preorder of expressions.

- 32 [v.2]
- A finite simulation method in a non-deterministic call-by-need calculus with letrec, constructors and case (2009)
- The paper proposes a variation of simulation for checking and proving contextual equivalence in a non-deterministic call-by-need lambda-calculus with constructors, case, seq, and a letrec with cyclic dependencies. It also proposes a novel method to prove its correctness. The calculus’ semantics is based on a small-step rewrite semantics and on may-convergence. The cyclic nature of letrec bindings, as well as nondeterminism, makes known approaches to prove that simulation implies contextual equivalence, such as Howe’s proof technique, inapplicable in this setting. The basic technique for the simulation as well as the correctness proof is called pre-evaluation, which computes a set of answers for every closed expression. If simulation succeeds in finite computation depth, then it is guaranteed to show contextual preorder of expressions.

- 31 [v.2]
- On equivalences and standardization in a non-deterministic call-by-need lambda calculus (2007)
- The goal of this report is to prove correctness of a considerable subset of transformations w.r.t. contextual equivalence in an extended lambda-calculus LS with case, constructors, seq, let, and choice, with a simple set of reduction rules; and to argue that an approximation calculus LA is equivalent to LS w.r.t. the contextual preorder, which enables the proof tool of simulation. Unfortunately, a direct proof appears to be impossible The correctness proof is by defining another calculus L comprising the complex variants of copy, case-reduction and seq-reductions that use variable-binding chains. This complex calculus has well-behaved diagrams and allows a proof of correctness of transformations, and that the simple calculus LS, the calculus L, and the calculus LA all have an equivalent contextual preorder.

- 31 [v.3]
- On equivalences and standardization in a non-deterministic call-by-need lambda calculus (2009)
- The goal of this report is to prove correctness of a considerable subset of transformations w.r.t. contextual equivalence in an extended lambda-calculus LS with case, constructors, seq, let, and choice, with a simple set of reduction rules; and to argue that an approximation calculus LA is equivalent to LS w.r.t. the contextual preorder, which enables the proof tool of simulation. Unfortunately, a direct proof appears to be impossible. The correctness proof is by defining another calculus L comprising the complex variants of copy, case-reduction and seq-reductions that use variable-binding chains. This complex calculus has well-behaved diagrams and allows a proof of correctness of transformations, and that the simple calculus LS, the calculus L, and the calculus LA all have an equivalent contextual preorder.

- 31
- On equivalences and standardization in a non-deterministic call-by-need lambda calculus (2007)
- The goal of this report is to prove correctness of a considerable subset of transformations w.r.t. contextual equivalence in a an extended lambda-calculus with case, constructors, seq, let, and choice, with a simple set of reduction rules. Unfortunately, a direct proof appears to be impossible. The correctness proof is by defining another calculus comprising the complex variants of copy, case-reduction and seq-reductions that use variablebinding chains. This complex calculus has well-behaved diagrams and allows a proof that of correctness of transformations, and also that the simple calculus defines an equivalent contextual order.