## Doctoral Thesis

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (3374) (remove)

#### Language

- German (2557)
- English (810)
- French (4)
- Spanish (2)
- Portuguese (1)

#### Keywords

- Deutschland (10)
- Gentherapie (8)
- HIV (8)
- Membranproteine (8)
- NMR-Spektroskopie (8)
- Schwerionenphysik (8)
- Alzheimer-Krankheit (7)
- Molekulardynamik (7)
- Nanopartikel (7)
- RNS (7)

#### Institute

- Medizin (1001)
- Biochemie und Chemie (581)
- Biowissenschaften (456)
- Physik (331)
- Pharmazie (270)
- Geowissenschaften (84)
- Psychologie (74)
- Gesellschaftswissenschaften (69)
- Wirtschaftswissenschaften (54)
- Kulturwissenschaften (51)

- Coalescent trees and their lengths (2014)
- The work presented in this thesis is devoted to two classes of mathematical population genetics models, namely the Kingman-coalescent and the Beta-coalescents. Chapters 2, 3 and 4 of the thesis include results concerned with the first model, whereas Chapter 5 presents contributions to the second class of models.

- On the existence and uniqueness of Glosten-Milgrom price processes (2013)
- We study the price-setting problem of market makers under perfect competition in continuous time. Thereby we follow the classic Glosten-Milgrom model that defines bid and ask prices as the expectation of a true value of the asset given the market makers partial information that includes the customers trading decisions. The true value is modeled as a Markov process that can be observed by the customers with some noise at Poisson times. We analyze the price-setting problem by solving a non-standard filtering problem with an endogenous filtration that depends on the bid and ask price process quoted by the market maker. Under some conditions we show existence and uniqueness of the price processes. In a different setting we construct a counterexample to uniqueness. Further, we discuss the behavior of the spread by a convergence result and simulations.

- Pólya urns via the contraction method (2013)
- In this thesis, the asymptotic behaviour of Pólya urn models is analyzed, using an approach based on the contraction method. For this, a combinatorial discrete time embedding of the evolution of the composition of the urn into random rooted trees is used. The recursive structure of the trees is used to study the asymptotic behavior using ideas from the contraction method. The approach is applied to a couple of concrete Pólya urns that lead to limit laws with normal distributions, with non-normal limit distributions, or with asymptotic periodic distributional behavior. Finally, an approach more in the spirit of earlier applications of the contraction method is discussed for one of the examples. A general transfer theorem of the contraction method is extended to cover this example, leading to conditions on the coefficients of the recursion that are not only weaker but also in general easier to check.

- A stochastic model for the joint evaluation of burstiness and regularity in oscillatory spike trains (2013)
- The thesis provides a stochastic model to quantify and classify neuronal firing patterns of oscillatory spike trains. A spike train is a finite sequence of time points at which a neuron has an electric discharge (spike) which is recorded over a finite time interval. In this work, these spike times are analyzed regarding special firing patterns like the presence or absence of oscillatory activity and clusters (so called bursts). These bursts do not have a clear and unique definition in the literature. They are often fired in response to behaviorally relevant stimuli, e.g., an unexpected reward or a novel stimulus, but may also appear spontaneously. Oscillatory activity has been found to be related to complex information processing such as feature binding or figure ground segregation in the visual cortex. Thus, in the context of neurophysiology, it is important to quantify and classify these firing patterns and their change under certain experimental conditions like pharmacological treatment or genetical manipulation. In neuroscientific practice, the classification is often done by visual inspection criteria without giving reproducible results. Furthermore, descriptive methods are used for the quantification of spike trains without relating the extracted measures to properties of the underlying processes. For that reason, a doubly stochastic point process model is proposed and termed 'Gaussian Locking to a free Oscillator' - GLO. The model has been developed on the basis of empirical observations in dopaminergic neurons and in cooperation with neurophysiologists. The GLO model uses as a first stage an unobservable oscillatory background rhythm which is represented by a stationary random walk whose increments are normally distributed. Two different model types are used to describe single spike firing or clusters of spikes. For both model types, the distribution of the random number of spikes per beat has different probability distributions (Bernoulli in the single spike case or Poisson in the cluster case). In the second stage, the random spike times are placed around their birth beat according to a normal distribution. These spike times represent the observed point process which has five easily interpretable parameters to describe the regularity and the burstiness of the firing patterns. It turns out that the point process is stationary, simple and ergodic. It can be characterized as a cluster process and for the bursty firing mode as a Cox process. Furthermore, the distribution of the waiting times between spikes can be derived for some parameter combination. The conditional intensity function of the point process is derived which is also called autocorrelation function (ACF) in the neuroscience literature. This function arises by conditioning on a spike at time zero and measures the intensity of spikes x time units later. The autocorrelation histogram (ACH) is an estimate for the ACF. The parameters of the GLO are estimated by fitting the ACF to the ACH with a nonlinear least squares algorithm. This is a common procedure in neuroscientific practice and has the advantage that the GLO ACF can be computed for all parameter combinations and that its properties are closely related to the burstiness and regularity of the process. The precision of estimation is investigated for different scenarios using Monte-Carlo simulations and bootstrap methods. The GLO provides the neuroscientist with objective and reproducible classification rules for the firing patterns on the basis of the model ACF. These rules are inspired by visual inspection criteria often used in neuroscientific practice and thus support and complement usual analysis of empirical spike trains. When applied to a sample data set, the model is able to detect significant changes in the regularity and burst behavior of the cells and provides confidence intervals for the parameter estimates.

- On the geometry, topology and approximation of amoebas (2013)
- We investigate multivariate Laurent polynomials f \in \C[\mathbf{z}^{\pm 1}] = \C[z_1^{\pm 1},\ldots,z_n^{\pm 1}] with varieties \mathcal{V}(f) restricted to the algebraic torus (\C^*)^n = (\C \setminus \{0\})^n. For such Laurent polynomials f one defines the amoeba \mathcal{A}(f) of f as the image of the variety \mathcal{V}(f) under the \Log-map \Log : (\C^*)^n \to \R^n, (z_1,\ldots,z_n) \mapsto (\log|z_1|, \ldots, \log|z_n|). I.e., the amoeba \mathcal{A}(f) is the projection of the variety \mathcal{V}(f) on its (componentwise logarithmized) absolute values. Amoebas were first defined in 1994 by Gelfand, Kapranov and Zelevinksy. Amoeba theory has been strongly developed since the beginning of the new century. It is related to various mathematical subjects, e.g., complex analysis or real algebraic curves. In particular, amoeba theory can be understood as a natural connection between algebraic and tropical geometry. In this thesis we investigate the geometry, topology and methods for the approximation of amoebas. Let \C^A denote the space of all Laurent polynomials with a given, finite support set A \subset \Z^n and coefficients in \C^*. It is well known that, in general, the existence of specific complement components of the amoebas \mathcal{A}(f) for f \in \C^A depends on the choice of coefficients of f. One prominent key problem is to provide bounds on the coefficients in order to guarantee the existence of certain complement components. A second key problem is the question whether the set U_\alpha^A \subseteq \C^A of all polynomials whose amoeba has a complement component of order \alpha \in \conv(A) \cap \Z^n is always connected. We prove such (upper and lower) bounds for multivariate Laurent polynomials supported on a circuit. If the support set A \subset \Z^n satisfies some additional barycentric condition, we can even give an exact description of the particular sets U_\alpha^A and, especially, prove that they are path-connected. For the univariate case of polynomials supported on a circuit, i.e., trinomials f = z^{s+t} + p z^t + q (with p,q \in \C^*), we show that a couple of classical questions from the late 19th / early 20th century regarding the connection between the coefficients and the roots of trinomials can be traced back to questions in amoeba theory. This yields nice geometrical and topological counterparts for classical algebraic results. We show for example that a trinomial has a root of a certain, given modulus if and only if the coefficient p is located on a particular hypotrochoid curve. Furthermore, there exist two roots with the same modulus if and only if the coefficient p is located on a particular 1-fan. This local description of the configuration space \C^A yields in particular that all sets U_\alpha^A for \alpha \in \{0,1,\ldots,s+t\} \setminus \{t\} are connected but not simply connected. We show that for a given lattice polytope P the set of all configuration spaces \C^A of amoebas with \conv(A) = P is a boolean lattice with respect to some order relation \sqsubseteq induced by the set theoretic order relation \subseteq. This boolean lattice turns out to have some nice structural properties and gives in particular an independent motivation for Passare's and Rullgard's conjecture about solidness of amoebas of maximally sparse polynomials. We prove this conjecture for special instances of support sets. A further key problem in the theory of amoebas is the description of their boundaries. Obviously, every boundary point \mathbf{w} \in \partial \mathcal{A}(f) is the image of a critical point under the \Log-map (where \mathcal{V}(f) is supposed to be non-singular here). Mikhalkin showed that this is equivalent to the fact that there exists a point in the intersection of the variety \mathcal{V}(f) and the fiber \F_{\mathbf{w}} of \mathbf{w} (w.r.t. the \Log-map), which has a (projective) real image under the logarithmic Gauss map. We strengthen this result by showing that a point \mathbf{w} may only be contained in the boundary of \mathcal{A}(f), if every point in the intersection of \mathcal{V}(f) and \F_{\mathbf{w}} has a (projective) real image under the logarithmic Gauss map. With respect to the approximation of amoebas one is in particular interested in deciding membership, i.e., whether a given point \mathbf{w} \in \R^n is contained in a given amoeba \mathcal{A}(f). We show that this problem can be traced back to a semidefinite optimization problem (SDP), basically via usage of the Real Nullstellensatz. This SDP can be implemented and solved with standard software (we use SOSTools and SeDuMi here). As main theoretic result we show that, from the complexity point of view, our approach is at least as good as Purbhoo's approximation process (which is state of the art).

- On a functional contraction method (2012)
- Within the last twenty years, the contraction method has turned out to be a fruitful approach to distributional convergence of sequences of random variables which obey additive recurrences. It was mainly invented for applications in the real-valued framework; however, in recent years, more complex state spaces such as Hilbert spaces have been under consideration. Based upon the family of Zolotarev metrics which were introduced in the late seventies, we develop the method in the context of Banach spaces and work it out in detail in the case of continuous resp. cadlag functions on the unit interval. We formulate sufficient conditions for both the sequence under consideration and its possible limit which satisfies a stochastic fixed-point equation, that allow to deduce functional limit theorems in applications. As a first application we present a new and considerably short proof of the classical invariance principle due to Donsker. It is based on a recursive decomposition. Moreover, we apply the method in the analysis of the complexity of partial match queries in two-dimensional search trees such as quadtrees and 2-d trees. These important data structures have been under heavy investigation since their invention in the seventies. Our results give answers to problems that have been left open in the pioneering work of Flajolet et al. in the eighties and nineties. We expect that the functional contraction method will significantly contribute to solutions for similar problems involving additive recursions in the following years.

- On continuous time trading of a small investor in a limit order market (2012)
- We provide a mathematical framework to model continuous time trading in limit order markets of a small investor whose transactions have no impact on order book dynamics. The investor can continuously place market and limit orders. A market order is executed immediately at the best currently available price, whereas a limit order is stored until it is executed at its limit price or canceled. The limit orders can be chosen from a continuum of limit prices. In this framework we show how elementary strategies (hold limit orders with only finitely many different limit prices and rebalance at most finitely often) can be extended in a suitable way to general continuous time strategies containing orders with infinitely many different limit prices. The general limit buy order strategies are predictable processes with values in the set of nonincreasing demand functions (not necessarily left- or right-continuous in the price variable). It turns out that this family of strategies is closed and any element can be approximated by a sequence of elementary strategies. Furthermore, we study Merton’s portfolio optimization problem in a specific instance of this framework. Assuming that the risky asset evolves according to a geometric Brownian motion, a proportional bid-ask spread, and Poisson execution times for the limit orders of the small investor, we show that the optimal strategy consists in using market orders to keep the proportion of wealth invested in the risky asset within certain boundaries, similar to the result for proportional transaction costs, while within these boundaries limit orders are used to profit from the bid-ask spread.

- Symmetries in semidefinite and polynomial optimization : relaxations, combinatorics, and the degree principle / von Cordian Benedikt Riener (2011)
- In recent years using symmetry has proven to be a very useful tool to simplify computations in semidefinite programming. This dissertation examines the possibilities of exploiting discrete symmetries in three contexts: In SDP-based relaxations for polynomial optimization, in testing positivity of symmetric polynomials, and combinatorial optimization. In these contexts the thesis provides new ways for exploiting symmetries and thus deeper insight in the paradigms behind the techniques and studies a concrete combinatorial optimization question.

- Automorphism groups of Wada dessins and Wilson operations (2010)
- Dessins d'enfants (children's drawings) may be defined as hypermaps, i.e. as bipartite graphs embedded in compact Riemann surfaces. They are very important objects in order to describe the surface of the embedding as an algebraic curve. Knowing the combinatorial properties of the dessin may, in fact, help us determining defining equations or the field of definition of the surface. This task is easier if the automorphism group of the dessin is "large". In this thesis we consider a special type of dessins, so-called Wada dessins, for which the underlying graph illustrates the incidence structure of points and of hyperplanes of projective spaces. We determine under which conditions they have a large orientation-preserving automorphism group. We show that applying algebraic operations called "mock" Wilson operations to the underlying graph we may obtain new dessins. We study the automorphism group of the new dessins and we show that the dessins we started with are coverings of the new ones.